Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T13:10:44.340Z Has data issue: false hasContentIssue false

Predictions of Static and Dynamic Properties of Liquid Crystalline and Polymeric Systems in Electric Fields

Published online by Cambridge University Press:  25 February 2011

F. Dowell*
Affiliation:
Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
Get access

Abstract

Predictions of static and dynamic properties from a unified molecular statistical mechanics theory for complex fluids in static electric fields are summarized. Included are thermodynamic, molecular ordering, and transport properties. In this new theory, the effects of an electric field Ee on the dipole moments and bond polarizabilities of tile molecules have been added to an eaxlier successful theory for complex organic molecules in condensed phases. Included are liquid crystalline (LC) and polymeric systems (including the first interlocking polymers).

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Dowell, F., J. Stat. Phys. 62, 1059 (1991).Google Scholar
[2] Dowell, F., in Liquid Crystalline Polymers, ed. by Weis's, R. A. and Ober, C. K., American Chemical Society Symposium Series No. 435 (American Chemical Society, Washington, DC, 1990), p. 335.Google Scholar
[3] Dowell, F., in Nonlinear Structures in Physical Systems, ed. by Lam, L. and Morris, H. C. (Springer-Verlag, New York, 1990), p. 232.Google Scholar
[4] Dowell, F., J. Chem. Phys. 91, (a) 1316, (b) 1326 (1989).Google Scholar
[5] Dowell, F., Polym. Preprints (a) 30 (2), 532 (1989); (b) 32 (2), 245 (1991); (c) 33 (1), xxx (in press, 1992).Google Scholar
[6] Dowell, F., Mat. Res. Soc. Symp. Proc. 134, (a) 33, (b) 47 (1989).Google Scholar
[7] Dowell, F., in Industry-University Advanced Materials Conference H, ed. by Smith, F. W. (Advanced Materials Institute, Colorado School of Mines, Golden, 1989), p. 605.Google Scholar
[8] Dowell, F., Mol. Cryst. Liq. Cryst. (a) 180A, 7 (1990); (b) 157, 203 (1988); 155, 457 (1988).Google Scholar
[9] Dowell, F., Phys. Rev. A (a) 38, 382 (1988); 36, 5046 (1987); 31, 3214 (1985); (b) 31, 2464, (1985); 28, 1003, 3526 (1983); (c) 28, 3520 (1983).Google Scholar
[10] Dowell, F., J. Chem. Phys. 70, 5494 (1979); 69, 4012 (1978).Google Scholar
[11] DiMarzio, E. A., J. Chem. Phys. 35, 658 (1961).Google Scholar
[12] Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., Molecular Theory of Gases and Liquids (Wiley, New York, 1964), (a) p. 941, (b) p. 988.Google Scholar
[13] Landolt-Bornstein Zahlenwerte und Functionen aus Physik, Chemie, Astronomie, Geophysik, und Technik, L Band Atom- und Molekularphysik, 3. Tell Molekeln II (Elektronen-hulle), ed. by Eucken, A. and Hellwege, K. H. (Springer-Verlag, Berlin, 1951), (a) pp. 506508, (b) pp. 509-517.Google Scholar
[14] McClellan, A. L., Tables of Experimental Dipole Moments (W. H. Freeman, Sail Francisco, 1963).Google Scholar
[15] Uhlenbeck, G. E. and Ornstein, L. S., Phys. Rev: 36, 823 (1930).Google Scholar
[16] Chandrasekhaxr, S., Rev. Mod. Phys. 15, 1 (1943).Google Scholar
[17] Selected Papers on Noise and Stochastic Processes, ed. by Wax, N. (Dover, New York, 1954).Google Scholar
[18] Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986), pp. 4668.Google Scholar
[19] McCrackin, F. L., J. Chem. Phys. 69, 5419 (1978).Google Scholar
[20] Bawendi, M. G. and Freed, K. F., J. Chem. Phys. 85, 3007 (1986).Google Scholar
[21] Gennes, P. G. de, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1975), (a) pp. 95124, (b) p. 166.Google Scholar
[22] Cummins, P. G., Dunmur, D. A., and Laidler, D. A., Mol. Cryst. Liq. Cryst. 30, 109 (1975).Google Scholar
[23] Broadhurst, M. G. and Davis, G. T., Ferroelectrics 60, 3 (1984).Google Scholar
[24] Davies, G. R., in Physics of Dielectric Solids, 1980, ed. by Goodman, C. H. L. (Institute of Physics, London, 1980), p. 50.Google Scholar
[25] Blumstein, R. B. et al. Macromolecules 17, 177 (1984).Google Scholar
[26] Klement, W. Jr., and Cohen, L. H., Mol. Cryst. Liq. Cryst. 27, 359 (1974).Google Scholar
[27] Fomin, S. et al. , Mendel. Commun., in press; Makrolmol. Chem. Rapid Commun., to be published.Google Scholar
[28] Kruger, G. J., Phys. Rep. 82, 230 (1982).Google Scholar
[29] Tseng, H.-C. and Finlayson, B. A., Mol. Cryst. Liq. Cryst. 116, 265 (1985).Google Scholar
[30] Miesowicz, M., Bull. Intern. Acad. Polon. Sci. Lett. Cl. Sci. Math. Natur., Ser. A, 228 (1936).Google Scholar
[31] Dowell, F., to be published.Google Scholar