Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-22T23:15:03.540Z Has data issue: false hasContentIssue false

Prediction of Radioactive Waste Glass Durability by the Hydration Thermodynamic Model: Application to Saturated Repository Environments

Published online by Cambridge University Press:  21 February 2011

Carol M. Jantzen
Affiliation:
Westinghouse Savannah River Company, Savannah River Site Aiken, SC 29808
W. Gene Ramsey
Affiliation:
Clemson University, Dept. Ceramic Engineering, Clemson, SC 29631
Get access

Abstract

The effects of groundwater chemistry on glass durability were examined using the hydration thermodynamic model. The relative durabilities of SiO2, obsidian, basalt, nuclear waste glasses, medieval window glasses, and a frit glass were determined in tuffaceous (J–13) groundwater, basaltic (GR–4) groundwater, WIPP–A brine, and Permian Basin brine (PBB–3) using the monolithic MCC–I durability test. In the groundwater–dominated MCC–l experiments, the interaction of the glasses and the initial groundwater (leachant) caused the formation of unique assemblages of secondary phases. The secondary phase formation, in turn, controlled the final groundwater (leachate) pH and ionic strength, I[t].

Correlations of the final leachate pH and I[t] with the Si release from the glass indicated that it is the influence of the secondary phase formation on the leachate pH and I[t] that controls the final dissolution rate of the glass. Since I[t] and the pH of the leachates are functions of the precipitation reactions, inclusion of the experimentally determined solution pH in the free energy of hydration model provides for the functional dependence of the dissolution rate on the secondary precipitation. Therefore, superposition of the linear equation for the groundwater and deionized water experiments occurs and the hydration free energy model can be used to compare glass durability in deionized water and in repository groundwaters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.US Dept. of Energy, Report No. DOE/EA-0179 (1982).Google Scholar
2. Plodinec, M.J., Jantzen, C.M., and Wicks, G.G., Adv. in Ceramics.V.8, Wicks, G.G. and Ross, W.A. (Eds), Am. Ceram. Soc., Columbus, OH, 491 (1984).Google Scholar
3. Plodinec, M.J., Jantzen, C.M. and Wicks, G.G., Sci. Basis for Nuclear Waste Mat., VII. McVay, G.L. (Ed.), North-Holland, NY, 755 (1984).Google Scholar
4. Jantzen, C.M. and Plodinec, M.J., J.Non-Cryst.Solids. 67, 207 (1984).Google Scholar
5. Jantzen, C.M., Adv. in Ceramics. V.20, Clarke, D.E., et. al. (Eds.) Am. Ceram. Soc., Columbus, OH, 703 (1986).Google Scholar
6. Jantzen, C.M., DP-MS-87-2, J. Am. Ceram. Soc. (in press).Google Scholar
7. Jantzen, C.M., Sci. Basis for Nuclear Waste Mat., XI, Apted, M.J. and Westerman, R.E. (Eds), Mat.Res.Soc., Pittsburgh, PA, 519(1988).Google Scholar
8. Jantzen, C.M., Materials Stability and Environmental Degredation, Barkatt, A. et al (Eds), Mat.Res.Soc., Pittsburgh, PA, 143 (1988).Google Scholar
9. Newton, R.G. and Paul, A., Glass Technology. 21, 307 (1980).Google Scholar
10. Plodinec, M.J., MRS Bulletin, XII[5], 61 (1987).Google Scholar
11. Jantzen, C.M., Scheetz, B.E., and Stevenson, C.M., “Hydration Thermodynamic Model: Applications to Nuclear Waste Glass Durability, Medieval Window Glass Durability, and Obsidian Rind Age Dating,” (in preparation)Google Scholar
12. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, Eng.Trans. by J.A. Franklin, NACE, Houston, TX, 644p (1974).Google Scholar
13. Garrels, R.M. and Christ, C.L., Solutions. Minerals, and Euilibra. Harper and Row, NY 435 p.(1965).Google Scholar
14. Paul, A., Chemistry of Glasses, Chapman and Hall, NY (1982).Google Scholar
15. Paul, A., J. Mat. Sci., 12, 2246 (1977).Google Scholar
16. Charles, R.J., J. Appl. Phys., 29, 1549 (1958).Google Scholar
17. Iler, R.K., Colloid Chemistry of Silica and Silicates, Cornell Univ. Press, Ithaca, NY (1955).Google Scholar
18. Rimstidt, J.D. and Barnes, H.Z., Geochem. Cosmochem. Acta. 44, 1683 (1980).Google Scholar
19. Douglas, R.W. and El-Shamy, T.M.M., J. Am. Ceram. Soc., 50, 1 (1967).Google Scholar
20. Grambow, B., Glastechnische Berichte. 56, 566 (1983).Google Scholar
21. Wallace, R.M. and Wicks, G.G., Sci. Basis for Nuclear Waste Mgt., VI, Brookins, D.G. (Ed.) 23 (1983).Google Scholar
22. Lasaga, A.C., J. Geophys. Res., 89, 4009 (1984).Google Scholar
23. Kittrick, J.A., ACS Symposium Series 93, 401 (1979).Google Scholar
24. Helgeson, H.C. and Mackenzie, F.T., Deep Sea Res., 17, 877 (1970).Google Scholar
25. Rimstidt, J.D., The Kinetics of Silica-Water Reactions, Unpublished PhD Thesis, The Penn. State University, 135p (1979).Google Scholar
26. Jantzen, C.M., Proceedings of the Conference on Advances in the Fusion of Glass, Bickford, D.F., et. al. (Eds) Am. Ceram. Soc., Westerville, OH, 24.1-24, 17 (1988).Google Scholar
27. Grambow, B., Sci. Basis for Nuclear Waste Mgt., VIII. Jantzen, C.M., et. al. (Eds), Mat. Res. Soc., Pittsburgh, PA, 15 (1985).Google Scholar
28. Aagaard, P. and Helgeson, H.C., Am. J. Sci.. 281, 237 (1982).Google Scholar
29. Cooke, D. and Paul, A., J. Br. Ceram. Soc., 77, 104 (1978).Google Scholar
30. Grambow, B., Ady. in Ceramics. V. 8, Wicks, G.G. and Ross, W.A. (Eds.), Amer. Ceram. Soc., Columbus, OH, 474 (1984).Google Scholar
31. Grambow, B. and Strachan, D.M., Sci. Basis for Nuclear Waste Mgt., VII, McVay, G.L. (Ed.), North-Holland, New York, 623 (1984).Google Scholar
32. Mendel, J.E. (compiler), U.S. DOE Report DOE/TIC-11400 (1981).Google Scholar
33. Berner, R.A., Principles of Chemical Sedimentology, McGraw Hill Book Co. (1971).Google Scholar
34. Deer, W.A., Howie, R.A., Zussman, J., Rock-Forming Minerals, Vol.3, Sheet Silicates, Longmans, Green and Co. Ltd., London (1965).Google Scholar
35. Bruton, C.J., Sci. Basis for Nuclear Waste Mgt.. XI, Apted, M.J. and Westerman, R.E. (Eds.), Mat.Res.Soc., Pittsburgh, PA, 607 (1988).Google Scholar
36. Phillips, S.L., Hale, F.V., and Siegel, M.D., LBL-25296 (1988).Google Scholar
37. Hayes, K.F. and Leckie, J.O., J. Colloid and Interface Sci., 115, 564 (1987).Google Scholar
38. Hayes, K.F., Papelis, C., and Leckie, J.O.. J. Colloid and Interface Sci. 717 (1988).Google Scholar
39. Wicks, G.G., Robnett, B.M., and Rankin, W.D., Sci. Basis for Nuclear Waste Mgt., V, Lutze, W. (Ed.), Elsevier Publ. Co., New York, 15 (1982).Google Scholar
40. Barkatt, A., Macedo, P.B., Gibson, B.C., and Montrose, C.J., Sci.Basis for Nuclear Waste Mgt., VIII, Jantzen, C.M., et.al.(Eds), Mat. Res. Soc., Pittsburgh, PA, 3 (1985).Google Scholar