Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T08:31:19.644Z Has data issue: false hasContentIssue false

Prediction of Nonlinear Optical Effects for Phenyl-Substituted Nickel Dithiolenes

Published online by Cambridge University Press:  03 September 2012

Steven Trohalaki
Affiliation:
Technical Management Concepts, Inc., P.O. Box 340345, Beavercreek, OH 45434–0345, trohals@ml.wpafb.af.mil
Robert J. Zellmer
Affiliation:
Anteon Corp., 5100 Springfield Pike, Suite 509, Dayton, OH 45431, zellmerj@picard.ml.wpafb.af.mil
Ruth Pachter
Affiliation:
Wright Laboratory, WL/MLPJ, 3005 P Street, Suite 1, Wright-Patterson Air Force Base, OH 45433–7702, pachterr@ml.wpafb.af.mil
Get access

Abstract

Nickel dithiolene complexes, known for their strong NIR absorptions, high thermal stability, and lightfastness, are being considered for nonlinear-optical applications. In particular, phenylsubstituted nickel dithiolenes may be of interest because it has recently been shown that the hyperpolarizability of a phenyl-substituted 1,3-dithiole can be strongly dependent on the torsional angle of the phenyl group relative to the dithiole ring [1]. We report results from Hartree-Fock ab initio calculations of the second hyperpolarizability as a function of phenyl torsion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kodaka, M., Fukaya, T., Yonemoto, K., and Shibuya, I., J. Chem. Soc., Chem. Comm. (1990) 1096Google Scholar
2. Oliver, S. and Winter, C., Advanced Materials (1992) 4(2), 119 Google Scholar
3. Winter, C.S., Hill, C.A.S., and Underhill, A.E., Appl. Phys. Lett (1991) 58(2), 107 Google Scholar
4. Spirit, D.M., Brown, G.W., Marshall, I.W., and Blank, L.C., Proc. SPIE (1990) 1373, 197 Google Scholar
5. Mueller-Westerhoff, U.T., Yoon, D., and Plourde, K., Mol. Crys. Liq. Cryst. (1990) 183, 291Google Scholar
6. Trohalaki, S., Zellmer, R., and Pachter, R., 1996 Fall MRS Meeting, Sympsoium D, Paper 15 Google Scholar
7. Nalwa, H.S. in Nonlinear Optics of Organic Molecules and Polymers, edited by Narwa, H.S. and Miyata, S., CRC Press, Toykyo, 1996, Chapter 9.Google Scholar
8. Craig, B.I. and Williams, G.R.J., Adv. Mater., Opt. Electron. (1992) 1, 221 Google Scholar
9. Spartan version 4.1, Wavefunction, Inc., 18401 Von Karman Ave. #370, Irvine, CA 92715Google Scholar
10. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., Montgomery, J.A., J. Comput. Chem. (1993) 14, 1347-Google Scholar
11. Stevens, W.J., Basch, H., Krauss, M., Jasien, P., Can. J. Chem (1992) 70, 612630 Google Scholar
12. Dudis, D.S. and Yeates, A. T, private communication.Google Scholar
13. Kurtz, H.A., Stewart, J.J.P., Dieter, K.M., J. Comput. Chem. (1990) 11, 8287 Google Scholar