Skip to main content Accessibility help

Predicting Thermal Transport in Bi2Te3: From Bulk to Nanostructures

  • Bo Qiu (a1) and Xiulin Ruan (a1)


Two-body interatomic potentials in the Morse potential form have been developed for bismuth telluride, and the potentials are used in molecular dynamics (MD) simulations to predict the thermal conductivity of Bi2Te3 bulk, nanowires and few-quintuple thin films. The density functional theory with local density approximations is first used to calculate the total energies for many artificially distorted Bi2Te3 configurations to produce the energy surface. Then by fitting to this energy surface and other experimental data, the Morse potential form is parameterized. Molecular dynamics simulations are then performed to predict the thermal conductivity of bulk Bi2Te3 at different temperatures, and the results agree with experimental data well. We also predicted the thermal conductivity of Bi2Te3 nanowires with diameter ranging from 3 to 30 nm with both smooth (SMNW) and rough (STNW) surfaces. It is found that when the nanowire diameter decreases to the molecular scale (below 10 nm, or the so called "quantum wire"), the thermal conductivity shows significant reduction as compared to bulk value. We find the dimensional crossover behavior of thermal transport in few quintuple layer (QL) thin films at room temperature, and we attribute it to the interplay between phonon Umklapp scattering and boundary scattering. Also, nanoporous films show significantly reduced thermal conductivity compared to perfect thin films, indicating that they can be very promising thermoelectric materials.



Hide All
1. Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’Quinn, B. Nature 2001, 413, 597.
2. Mavrokefalos, A.; Moore, A. L.; Pettes, M. T.; Shi, L.; Wang, W.; Li, X. J. Appl. Phys. 2009, 105, 104318.
3. Teweldebrhan, D.; Goyal, V.; Balandin, A. A. Nano Lett. 2010, 10, 1209.
4. Chen, C.; Chen, Y.; Lin, S.; Ho, J. C.; Lee, P.; Chen, C.; Harutyunyan, S. R. J. Phys. Chem. C 2010, 114, 3385.
5. Teweldebrhan, D.; Goyal, V.; Rahman, M.; Balandin, A. A. Appl. Phys. Lett. 2010, 96, 053107.
6. Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P.; Majumdar, A. Appl. Phys. Lett. 2003, 83, 2934.
7. Zhou, J.; Jin, C.; Seol, J. H.; Li, X.; Shi, L. Appl. Phys. Lett. 2005, 87, 133109.
8. Biswas, K. G.; Sands, T. D.; Cola, B. A.; Xu, X. Appl. Phys. Lett. 2009, 94, 223116
9. Ghosh, S.; Bao, W.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Nat. Mater. 2010, 9, 555.
10. Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z.; Zhang, S. C.; Fisher, I. R.; Hussain, Z.; Shen, Z. X. Science 2009, 325, 178.
11. Qiu, B; Ruan, X. Phys. Rev. B 2009, 80, 165203.
12. Jeong, C.; Datta, S.; Lundstrom, M. J. Appl. Phys. 2011, 109, 073718


Predicting Thermal Transport in Bi2Te3: From Bulk to Nanostructures

  • Bo Qiu (a1) and Xiulin Ruan (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed