Skip to main content Accessibility help

Predicting Nonlinear Optical Properties of Delocalized Charge States in Polyenylic Chromophores and Dendrimers

  • C. Dirk (a1), C. Spangler (a2), L. Madrigal (a2) and E. H. Elandaloussi (a2)


Over the past several years there has been continuing interest in the design of highly conjugated monomers, oligomers and polymers for a variety of photonics applications dependent on a nonlinear response to intense laser radiation. Materials design criteria for these various applications depend on accurate structure-property relationships, and while these relationships can best be determined experimentally, computational approaches that can accurately predict trends in series are extremely useful in establishing target molecules having the desired photonic properties. We have recently reviewed the relationship between incorporation of polaronic or bipolaronic charge states in oligomeric or polymeric conjugation sequences' and enhanced third-order optical nonlinearity, particularly for finite-length polyenes. In this presentation we will focus on how these charge states can be stabilized by electron-donating substituents in dithienylpolyenes, and in model dendrimers based on bis(diphenylamino)stilbene repeat units, and illustrate why these criteria are important for the design of new optical limiting chromophores.



Hide All
1. Spangler, C. W., Handbook of Conducting Polymers, 2d ed., Skotheim, T., Elsenbaumer, R., Reynolds, J.. Eds., Marcel Dekker, Inc. New York, 1998, pp. 743763.
2. Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, Kuzyk, M., Dirk, C., Eds., Marcel Dekker, Inc., New York, 1998.
3. Dirk, C. W., Cheng, L-T., and Kuzyk, M. G., Int. J. Quant. Chem. 43, p. 27 (1992).
4. Spangler, C. W., Liu, P.-K., Dembek, A. A. and Havelka, K. O., J. Chem. Soc. Perkin Trans. 1, p. 799 (1991).
5. Spangler, C. W., Liu, P.-K. and Havelka, K. O., J. Chem. Soc. Perkin Trans 2, p. 1207 (1992).
6. Spangler, C. W. and Liu, P.-K., J. Chem. Soc. Perkin Trans. 2, p. 1959 (1992).
7. Spangler, C. W. and He, M. Q., J. Chem. Soc. Perkin Trans 1, p. 715 (1995).
8. Spangler, C. W., He, M. Q., Laquindanum, J., Dalton, L., Tang, N., Partanen, J. and Hellwarth, R., Mat. Res. Soc. Symp. Proc. 328, p. 655 (1994).
9. Tang, N., Partanen, J. P., Hellwarth, R. W., Laquindanum, J., Dalton, L. R., He, M. Q. and Spangler, C. W., Proc. SPIE 2285, p. 186 (1994).
10. deMelo, C. P. and Silbey, R., J. Chem. Phys. 88, p. 2558 (1988).
11. deMelo, C. P. and Silbey, R., J. Chem. Phys. 88, p. 2567 (1988).
12. Tallent, J. R., Birge, R. R., Spangler, C. W. and Havelka, K. O., Molecular Electronics-Science and Technology, Aviram, A., Ed., Am. Inst. Phys., New York, 1992, pp. 191203.
13. Madrigal, L. G., Spangler, C. W., Casstevens, M. K., Kumar, D., Weibel, J. and Burzynski, R., Polym. Prepr., 39(2), p. 1057 (1998).
14. Spangler, C. W., Faircloth, T., Elandaloussi, E. H. and Reeves, B., Mat. Res. Soc. Symp. Proc. 488, p. 283 (1998).
15. Spangler, C. W. and Elandaloussi, E. H., Polym. Prepr. 39(2), 1055 (1998).
16. Marder, S. R., Gorman, C. B., Meyers, F., Perry, J. W., Bourhill, G., Bredas, J.-L. and Pierce, B. M., Science, 265, p. 632 (1994).
17. Gorman, C. B. and Marder, S. R., Proc. Natl. Acad. Sci. USA 90, p. 11297 (1993).
18. Marder, S. R., Perry, J. W. Bourhill, G., Gorman, C. B., Tieman, B. G. and Mansour, K., Science, 261, p. 186 (1993).
19. Xie, O. and Dirk, C. W., J. Phys. Chem. B, 102, p. 9378 (1998).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed