Skip to main content Accessibility help
×
Home

Potential Of Quasicrystals And Quasicrystalline Approximants For Utilization In Small Scale Thermoelectric Refrigeration And Power Generation Applications

  • Terry M. Trrit (a1), A. L. Pope (a1), M. Chernikov (a2), M. Feuerbacher (a2), S. Legault (a3), R. Gagnon (a3) and J. Strom-Olsen (a3)...

Abstract

We have identified quasicrystals and quasicrystalline approximants as potential candidates for small scale thermoelectric power generation and refrigeration applications. A number of quasicrystalline systems have been investigated, however, the focus in this paper will be on the ALPdMn (typically Al70Pd20Mn10) system. Currently, we are systematically investigating the electrical and thermal transport properties of the AlPdMn quasicrystalline system in relation to differing sample composition, systematic addition of impurities, and different annealing conditions. Several different preparation techniques have been employed in order to determine optimal techniques for maximizing the thermal and electrical properties of this quasicrystalline system for possible thermoelectric applications. Resistivity and thermopower have been performed over a temperature range between 5K and 320K. Thermal conductivity measurements have been performed over a temperature range between 20K and 300K. In the pure, single phase nominally Al70Pd20Mn10 we have observed thermopower values as high as +85 μV/K around room temperature with resistivity values of 1.5 mΩ-cm. Thermal conductivity measurements yield values less than 3 W/m-K. We will discuss how these properties are affected by the parameters we have varied and the trends we have observed so far. We will discuss the future investigations of the electrical and thermal transport properties of quasicrystals in relation to potential thermoelectric applications.

Copyright

References

Hide All
1. Goldsmid, H. J., Electronic Refrigeration, (Pion Limited Publishing), London, (1986).
2. CRC Handbook of Thermoelectrics, edited Rowe, D. M., CRC Press, Boca Raton (1995).
3. Wood, C. W., Rep. Prog. Phys. 51, 459539 (1988).
4. Thermoelectric Materials –– New Directions and Approaches, edited by Terry M., Tritt, Kanatzidis, M., Lyon, H. B. Jr,. and Mahan, G. D., MRS Proc. Volume 478, (1997)
5. Terry Tritt, M., Science, 272, 1276 (1996).
6. Sales, B. C., Mandrus, D. and Williams, R. K., Science, 272, 1325 (1996).
7. Slack, G. A. and Toukala, V. G., Jour. Appl. Phys. 76, 1635 (1994); G. Nolas, et at., Jour. Appl. Phys., 79, 4002 (1996); D. T. Morelli, et al., Phys. Rev. B 51, 9622 (1995).
8. Tritt, T. M., et al., Jour. Appl. Phys., 79, 8412 (1996).
9. Baoxing Chen, et al., Phys. Rev. B 55, 1476 (1997).
10. Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B. 47, 12727 (1993).
11. Hicks, L. D., et al., Phys. Rev. B. 53, R10493 (1996).
12. R Venkatasubramanian, Proc. of the XIII International Conference on Thermoelectrics, AIP, p 40–44 (1995).
13. Venkatasubramanian, R., reference #4, MRS Volume 478, p73 (1997).
14. Littleton, R. T., Tritt, T. M., et al., Appl. Phys. Lett., 72, 2056, (1998)
15. see for example: 1998 MRS Symposium Proceedings:Thermoelectric Materials:The Next Generation Materials for Small Scale Refrigeration and Power Generation Applications. editors.: Tritt, T. M., Kanatzidis, M., Mahan, G. D. and Lyon, H. B. Jr,.
16. Slack, G. A., in CRC Handbook of Thermoelectrics, Rowe ed. 1995, ref. 2, p 407.
17. Slack, G. A., in Solid State Physics, 34, 1 (1979), ed. by Seitz, F., Turnbull, D., and Ehrenreich, H., Academic Press, New York.
18. Shechtman, D., et al., Phys. Rev. Lett. 53, 1951 (1984).
19. Legault, S., et al., Conference Proceedings “New Horizons in Quasicrystals: Research and Applications”, August 19–23, 1996, Iowa State University, Ames, Iowa.
20. Perrot, A., et al., Proc. of 5th Int. Conf. on Quasicrystals, World Scientific, 1995, p.588.
21. Poon, S. J., Adv. in Phys. 41, 303 (1992)
22. Mayou, D., et. al. Phys. Rev. Lett. 70, 3915 (1993)
23. Pope, A. L., Tritt, Terry M., et. al., (Same as reference 15)

Potential Of Quasicrystals And Quasicrystalline Approximants For Utilization In Small Scale Thermoelectric Refrigeration And Power Generation Applications

  • Terry M. Trrit (a1), A. L. Pope (a1), M. Chernikov (a2), M. Feuerbacher (a2), S. Legault (a3), R. Gagnon (a3) and J. Strom-Olsen (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed