Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T14:47:02.962Z Has data issue: false hasContentIssue false

Post-Deposition Annealing and Hydrogenation of Hot-Wire Amorphous and Microcrystalline Silicon Films

Published online by Cambridge University Press:  15 February 2011

J. P. Conde
Affiliation:
Department of Materials Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1096 Lisboa Codex, Portugal, pcfconde@alfa.ist.utl.pt
P. Brogueira
Affiliation:
Department of Physics, Instituto Superior Técnico, Av. Rovisco Pais, 1096 Lisboa Codex, Portugal
V. Chu
Affiliation:
Instituto de Engenharia de Sistemas e Computadores, Rua Alves Redol 9, 1000 Lisboa, Portugal
Get access

Abstract

Amorphous and microcrystalline silicon films deposited by hot-wire chemical vapor deposition were submitted to thermal annealing and to RF and electron-cyclotron resonance (ECR) hydrogen plasmas. Although the transport properties of the films did not change after these post-deposition treatments, the power density of a Ar+ laser required to crystallize the amorphous silicon films was significantly lowered by the exposure of the films to a hydrogen plasma. This decrease was dependent on the type of hydrogen plasma used, being the strongest for an ECR plasma with the substrate held at a negative bias, followed by an ECR hydrogen plasma with the substrate electrode grounded, and finally by an RF hydrogen plasma.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wiesmann, H., Ghosh, A.K., McMahon, T., and Strongin, M., J. Appl. Phys. 5O, 3752 (1979).Google Scholar
2.Matsumura, H., Jpn. J. Appl. Phys. 25, L949 (1986); J. Appl. Phys. 65, 4396 (1989); Jpn. J. Appl. Phys. 30, L1522 (1991).Google Scholar
3.Doyle, J., Robertson, R., Lin, G.H., He, M.Z., and Gallagher, A., J. Appl. Phys. 64, 3215 (1988).Google Scholar
4.Mahan, A.H., Carapella, J., Nelson, B. P., Crandall, R.S., and Balberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
5.Zedlitz, R., Kessler, F., and Heintze, M., J. Non-Cryst. Solids 164–166, 83 (1993).Google Scholar
6.Cifre, J., Bertomeu, J., Puigdollers, J., Polo, M.C., Andreu, J., and Lloret, A., Appl. Phys. A 59, 645 (1994).Google Scholar
7.Middya, A.R., Lloret, A., Perrin, J., Hue, J., Moncel, J.L., Parey, J.Y., and Rose, G., Mater. Res. Soc. Symp. Proc. 377, 119 (1995).Google Scholar
8.Mahan, A.H., Vanacek, M., AIP Conf. Proc. 234, 195 (1991).Google Scholar
9.Conde, I.P., Brogueira, P., Castanha, R., Chu, V., Mat. Res. Soc. Symp. Proc. 420, in press (1996).Google Scholar
10.Kaneko, T., Wagaki, M., Onisawa, K., and Minemura, T., Appl. Phys. Lett. 64, 1865 (1994).Google Scholar
11.Veprek, S., Sarott, F.A., and Iqbal, Z., Phys. Rev. B36, 3344 (1987).Google Scholar
12.He, Y., Yin, C., Cheng, G., Wang, L., Liu, X., and Hu, G. Y., J. Appl. Phys. 75, 797 (1994).Google Scholar
13.Smith, D.L., Thin-Film Deposition: Principles and Practice, McGraw-Hill, New York, 1995, pp. 453555.Google Scholar