Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T16:16:36.957Z Has data issue: false hasContentIssue false

Positron Annihilation and Electron Spin Resonance of Electron-Irradiated 3C-SiC

Published online by Cambridge University Press:  03 September 2012

Hisayoshi Itoh
Affiliation:
Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370–12, Japan
Masahito Yoshikawa
Affiliation:
Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370–12, Japan
Long Wei
Affiliation:
Institute of Materials Science, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305, Japan
Shoichiro Tanigawa
Affiliation:
Institute of Materials Science, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305, Japan
Isamu Nashiyama
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba, Ibaraki 305, Japan
Shunji Misawa
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba, Ibaraki 305, Japan
Hajime Okumura
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba, Ibaraki 305, Japan
Sadafumi Yoshida
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

Positron annihilation and electron spin resonance (ESR) have been used to study defects introduced by lMeV electron irradiation in n-type cubic silicon carbide (3C-SiC) epitaxially grown on Si by chemical vapor deposition. Positron annihilation measurements by using variable-energy positron beams indicated the narrowing of the Doppler-broadened energy spectrum of annihilation gamma-rays and the decrease in the effective diffusion length of positrons with increasing the electron fluence. These results show the formation of vacancy-type defects in 3C-SiC. An ESR spectrum labeled T1, which has an isotropie g-value of 2.0029±0.0001, was observed in electron irradiated 3C-SiC. The T1 spectrum is interpreted by hyperfine interactions of paramagnetic electrons with 13C at four carbon sites and 29Si at twelve silicon sites, leads that the Tl center results from a point defect at a silicon sublattice site. The production rate of the Tl center was in good agreement with the carrier removal rate, indicating that the Tl center captures an electron from the conduction band. All these results are accounted for by the introduction of negatively charged vacancies at silicon sublattice sites in 3C-SiC by the irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nelson, W.E., Halden, F. A., and Rosengreen, A., J. Appl. Phys. 37, 333 (1966).CrossRefGoogle Scholar
[2] Ferry, D. K., Phys. Rev. B12, 2361 (1975).CrossRefGoogle Scholar
[3] Nishino, S., Powell, J. W., and Hill, H. A., Appl. Phys. Lett. 42, 460 (1983).Google Scholar
[4] Yoshida, S., Endo, K., Sakuma, E., Misawa, S., Ókumura, H., Daimon, H., Muneyama, É., and Yamanaka, M., Mat. Res. Soc. Symp. Proc. No.97 (Materials Research Society, 1987) p. 259.Google Scholar
[5] Liaw, P. and Davis, R. F., J. Electrochem. Soc. 132, 642 (1985).Google Scholar
[6] Shibahara, K., Nishino, S., and Matsunami, H., Jpn. J. Appl. Phys. 23, L862 (1984).Google Scholar
[7] Palmour, J. W., Kong, H. S., and Davis, R. F., J. Appl. Phys. 64, 2168 (1988).CrossRefGoogle Scholar
[8] Yoshikawa, M., Itoh, H., Morita, Y., Nashiyama, I., Misawa, S., Okumura, H., and Yoshida, S., J. Appl. Phys. 70, 1309 (1991).Google Scholar
[9] Freitas, J. A. Jr, Bishop, S. G., Edmond, J. A., Ryu, J., and Davis, R. F., J. Appl. Phys. 61, 2011 (1987).Google Scholar
[10] Nagesh, V., Farmer, J. W., Davis, R. F., and Kong, H. S., Radiation Effects and Defects in Solids 112, 77 (1990).CrossRefGoogle Scholar
[11] Nashiyama, I., Nishijima, T., Sakuma, E., and Yoshida, S., Nucl. Inst. & Methods Phys. Res. B33, 599 (1988).CrossRefGoogle Scholar
[12] Tanigawa, S., Iwase, Y., Uedono, A., and Sakairi, H., J. Nucl. Mater. 133&134, 463 (1985).Google Scholar
[13] Wei, L., Cho, Y-K., Dosho, C., Kurihara, T., and Tanigawa, S., Jpn. J. Appl. Phys. 30, 2863 (1991).Google Scholar
[14] Itoh, H., Hayakawa, N., Nashiyama, I., and Sakuma, E., J. Appl. Phys. 66, 4529 (1989).Google Scholar
[15] Itoh, H., Yoshikawa, M., Nashiyama, I., Misawa, S., Okumura, H., and Yoshida, S., IEEE Trans. Nucl. Sci. NS-37, 1732 (1990).Google Scholar
[16] Itoh, H., Yoshikawa, M., Nashiyama, I., Misawa, S., Okumura, H., and Yoshida, S., in Amorphous and Crystalline Silicon Carbide III, edited by Harris, G.L. (Springer, Berlin) in press.Google Scholar
[17] Lin-Chung, P.J. and Li, Y., in Defects in Semiconductors, Materials Science Forum Vol.10–12, edited by von Bardeleben, H.J. (Trans Tech, Switzerland, 1986) p.1247.Google Scholar