Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T09:48:42.711Z Has data issue: false hasContentIssue false

The Polysilicon-Silicon Interface

Published online by Cambridge University Press:  22 February 2011

Robert W. Keyes*
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Get access

Abstract

Polycrystalline silicon is frequently deposited on single crystal silicon as a part of devices. The poly is used as both a dopant source and a low resistance contact in a modern method of fabricating high gain bipolar transistors. The randomness of polysilicon and its interface with the single crystal is an inherent source of differences among nominally identical transistors, however, and is a marked departure from the trend towards more and more perfect crystals that characterizes the rest of silicon technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bartelink, D. in Grain Boundaries in Semiconductors, ed. Leamy, H.J., Pike, G.E., and Seager, C.H. (North-Holland, New York, 1982).Google Scholar
2. Grovenor, C.R.M., J. Phys. C: Solid State Phys. 18, 4079– (1985).Google Scholar
3. Graul, J., Glasl, A., and Murmann, M., IEEE J. Solid-State Circuits SC–11, 491–4 (1976).Google Scholar
4. Konaka, S., Yamamoto, Y., and Sakai, T., IEEE Trans. Electr. Dev. ED–33, 526–31 (1986).Google Scholar
5. Ning, T.H. and Isaac, R.D., IEEE Trans. Electr. Dev. ED–27, 20812085 (1980).Google Scholar
6. DeGraaf, H. and DeGroot, J., IEEE Trans. Electr. Dev. ED–26, 1771–76 (1979).Google Scholar
7. Stork, J.M.C., Arienzo, M., and Wong, C.Y., IEEE Trans. Electr. Dev. ED–32, 17661770 (1985).Google Scholar
8. Chor, E.F., Ashburn, P., and Brunnschweiler, A., IEEE Electr. Dev. Letters EDL–6, 516518 (1985).CrossRefGoogle Scholar
9. Carim, A.H., et al., Science 237, 630–32 (1987).Google Scholar
10. Oehrlein, G.S., et al., Materials Research Society (Spring 1986).Google Scholar
11. Yu, Z., Ricco, B., and Dutton, R.W., IEEE Trans. Electr. Dev. ED–31, 773784 (1981).Google Scholar
12. Halen, P. Van and Pulfrey, D.L., IEEE Trans. Electr. Dev. ED–32, 1307–13 (1985).CrossRefGoogle Scholar
13. Keyes, R.W., Adv. Electronics and Electron Physics 70, 159214 (1987).Google Scholar
14. Wong, C.Y., et al., J. Appl. Phys. 55, 11311134 (1984).Google Scholar
15. Arienzo, M., Komem, Y., and Michel, A.E., J. Appl. Phys. 55, 365–9 (1984).Google Scholar
16. Neugroschel, A., et al., IEEE Trans. Electr. Dev. ED–32, 807815 (1985).Google Scholar
17. Patton, G.L., Bravman, J.C., and Plummer, J.D., IEEE Trans. Electr. Dev. ED–33, 17541768 (1986).Google Scholar
18. Wong, C.Y. and Klepner, S.P., Appl. Phys. Letters 48, 1229–30 (1986).Google Scholar
19. Bravman, J.C., Patton, G.L., and Plummer, J.D., J. Appl. Phys. 57, 27792782 (1985).Google Scholar
20. Jorke, H., Herzog, H.-J., and Kibbel, H., Appl. Phys. Letters 47, 511–13 (1985).CrossRefGoogle Scholar
21. Meyerson, B.S., Appl. Phys. Lett. 48, 797799 (1986).Google Scholar
22. Nguyen, T.N., et al., 1986 International Electron Devices Meeting Technical Digest (IEEE 1986).Google Scholar
23. Sugii, T., et al., IEEE Electron Devices Letters, EDL–8, 528–31 (1987).Google Scholar
24. Natsuaki, N., et al., IEDM 83, paper 29.3; M. Tamura, N. Natsuaki, and S. Aoki, Japan J. Appl. Phys. 24, L151-4 (1985).Google Scholar
25. Harrison, H.B., et al., MRS Symposia Proceedings 71, 455 (1986).Google Scholar
26. Hoyt, J.L., et al., Appl. Phys. Letters 50, 751–3 (1982).Google Scholar