Skip to main content Accessibility help
×
Home

Poly(methyl phenyl siloxane) in Random Nanoporous Glasses: Molecular Dynamics and Structure

  • Andreas. Schönhals (a1), Harald. Goering (a1), Christoph Schick (a2), Bernhard. Frick (a3) and Reiner Zorn (a4)...

Abstract

The effect of a nanometer confinement on the molecular dynamics of poly(methyl phenyl siloxane) (PMPS) was studied by dielectric spectroscopy (DS), temperature modulated DSC (TMDSC) and neutron scattering (NS). DS and TMDSC experiments show that for PMPS in 7.5 nm pores the molecular dynamics is faster than in the bulk which originates from an inherent length scale of the underlying molecular motions. At a pore size of 5 nm the temperature dependence of the relaxation times changes from a Vogel / Fulcher / Tammann like behavior to an Arrhenius one. At the same pore size Δcp vanishes. These results give strong evidence that the glass transition has to be characterized by an inherent length scale of the relevant molecular motions. Quasielastic neutron scattering experiments reveal a strong change even in the microscopic dynamic.

Copyright

References

Hide All
1. Proceedings of the International Workshop on Dynamics in Confinement ed Frick, B., Zorn, R. and Büttner, H, J Phys IV 10, (2000).
2. Proceedings of the International Workshop on Dynamics in Confinement ed Frick, B., Zorn, R. and Koza, M., Eur. Phys. E 12 (2003).
3. Dynamics in Small Confining Systems IV ed. Drake, J.M., Grest, G.S., Klafter, J. and Kopelman, R. Mat. Res. Soc. Symp. Proc. 543 (1998).
4. Kremer, F., Huwe, A., Schönhals, A. and Różański, A.S. “Molecular Dynamics in Confining Space”, Broadband Dielectric Spectroscopy, ed. Kremer, F. and Schönhals, A. (Springer, 2002) p 171.
5. Anderson, P. W., Science 267, 1615 (1995);
Angel, C. A., Science 267, 1924 (1995);
Debenedetti, P.G., and Stillinger, F.H., Nature 410, 259 (2000).
6. Adam, G. and Gibbs, J. H., J. Chem. Phys. 43, 139 (1965);
Kivelson, D., Kivelson, S. A., Zhao, X., Nussinov, Z. and Tarjus, G., Physica A 219, 27 (1995).
7. Donth, E., The Glass Transition (Springer Verlag Berlin 2001)
8. Sillescu, H. J. Non-Cryst. Solids 243, 81 (1999)
9. Ediger, M. D., Ann. Rev. Phys. Chem. 51, 99 (2000)
10. Arndt, M., Stannarius, R., Groothues, H., Hempel, E., and Kremer, F., Phys Rev Lett 79, 2077 (1997).
11. Huwe, A., Kremer, F., Behrens, P., and Schwieger, W., Phys Rev Lett 82, 2338 (1999).
12. Morineau, D., Xia, Y., and Alba-Simionesco, Ch., J. Chem. Phys. 117, 8966 (2002).
13 Schönhals, A., Goering, H., and Schick, Ch., J. Non-Cryst. Solids 305, 140 (2002)
14 Schönhals, A., Goering, H., and Schick, Ch., Phys. Rev. Lett. (submitted)
15 Schönhals, A., Goering, H., Schick, Ch., Zorn, R. and Frick, B., Eur. Phys. E 12 (2003) in press
16. Kremer, F. and Sch, A.önhals “Broadband Dielectric Measurement Techniques”, Broadband Dielectric Spectroscopy, ed. Kremer, F. and Schönhals, A. (Springer, 2002) p 35.
17. Kremer, F. and Schönhals, A. “Analysis of Dielectric Spectra”, Broadband Dielectric Spectroscopy, ed. Kremer, F. and Schönhals, A. (Springer, 2002) p 59.
18. Schick, Ch., Temperature “Modulated Differential Scanning Calorimetry (TMDSC) -Basics and Applications to Polymers”, Handbook of Thermal Analysis and Calorimetry, Vol. 3 ed. Cheng, S. (Elsevier Amsterdam, 2002) p 713.
19. Vogel, H., Phys. Z. 22, 645 (1921);
Fulcher, G.S., J. Amer. Ceram. Soc. 8, 339 (1925);
Tammann, G., Hesse, W., Z. Anorg. Allg. Chem. 156, 245 (1926).
20. This is not in contradiction with the observed molecular mobility by DS. An Arrhenius-like temperature dependence indicates localized molecular motions which cannot be detected by DCS
21. Schönhals A, Zorn R, Frick B in preparation

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed