Skip to main content Accessibility help

Polymers for Optical-Communications Device Fabrication-Optical Adhesives and Polyimide Waveguides-

  • T. Maruno (a1)


Two types of novel organic materials have been specifically developed for the fabrication of optical-communications systems devices. One is a UV-curable durable epoxy adhesive featuring refractive index controllability, low shrinkage during curing, and a low heat-expansion coefficient. These optically transparent adhesives are refractive index controllable between 1.45 and 1.59, and have been successfully applied to many optical devices that require return losses of more than 40 dB. The precision adhesives show an extremely low volume shrinkage of less than 2% during curing. The submicron positioning accuracy of these adhesives allows the fabrication of highperformance laser-diode modules and optical modulators. The other type of material is a fluorinated polyimide (F-PI) for optical waveguides; it features high optical transparency from visible to near-infrared and good heat resistance. Buried optical waveguides fabricated from F-PI operate in a single mode. They also exhibit a low loss of less than 0.3 dB/cm at the wavelength of 1.3 μm, and are heat and moisture resistant: the increase in optical loss is less than 5% after heating at 300°C for lh or after exposure to 85% relative humidity at 85°C for 24h.



Hide All
1. Iso, T., et al., ECOC-IOOC 91, Paper Web 6–1, pp. 97–100 (1991).
2. Minowa, J., Saruwatari, M., and Suzuki, N., IEEE J. Quantum Electron., QE-18, 705 (1982).
3. Mitomi, O., Kawano, K., and Ichihashi, Y., Rev. of the Electr. Commun. Labs, 33, 977 (1985).
4. Yamada, Y. and Kobayashi, M., J. Lightwave Tech., LT-5(12), 1716 (1987).
5. Maruno, T., Ishibashi, S., and Nakamura, K., IUPAC CHEMPAWN I., 11K08 (1987).
6. Murata, N., Nakamura, K., and Nara, S., Proc. of the 5th Int. Conf. on Plastics in Telecom., 6/1 (1989).
7. Maruno, T. and Nakamura, K., J. Appl. Polym. Sci., 42, 2141 (1991); T. Maruno and K. Nakamura, and N. Murata, Macromolecules, 29, 2006 (1996).
8. Nakamura, K., Murata, N., and Maruno, T., Rev. of Electr. Commun. Labs., 37, 127 (1989).
9. Murata, N. and Nakamura, K., Adhesion, J., 35, 251 (1991).
10. Matsuura, T., et al., Macromolecules, 26, 419 (1993); T. Matsuura, et al., Macromolecules, 27, 6665 (1994).
11. Matsuura, T., et al., Electron Lett., 29, 2107 (1993).
12. Maruno, T., Matsuura, T., Ando, S., and Sasaki, S., Nonlinear Optics, 15, 485 (1996).
13. Suzuki, M., Nakanishi, T., Tsuzuki, T., and Murata, N., IEEE 40th ECTC, 1, 200 (1990).
14. Suzuki, M., Nakanishi, T., and Murata, N., Trans. IEICE, E 72, 1048 (1989).
15. Maruno, T. and Nakamura, K., Kobunshi Ronbunshu, 48, 359 (1991).
16. Maruno, T. and Murata, N., J. Adhesion Sci. Technol., 9, 1343 (1995).
17. Booth, B. L., J. Lightwave Technol., LT–7, 1445 (1989).
18. Imamura, S., Yoshimura, R., and Izawa, T., Electron Lett., 27, 1342 (1991).
19. Christensen, D. A., Proc. Soc. Photo-opt. Instrum. Eng., 836, 359 (1987).
20. Usui, M., et al., Electron Lett., 30, 958 (1994).
21. Reuter, R., Franke, H., and Feger, C., Appl. Opt., 27, 4565 (1988).

Polymers for Optical-Communications Device Fabrication-Optical Adhesives and Polyimide Waveguides-

  • T. Maruno (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed