Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T01:42:29.017Z Has data issue: false hasContentIssue false

Polymerization in Inverse Microemulsion: An Effective Tool to Produce Biodegradable and non Biodegradable Nanoparticles

Published online by Cambridge University Press:  15 March 2011

F. Lebon
Affiliation:
Dip. Scienze Biomediche e Biotecnologie, Univ. di Brescia, Brescia, Italy Ist. Nazionale di Fisica della Materia (INFM), Brescia, Italy
C. Grandfils
Affiliation:
Interfacultary Biomaterial Centre, University of Liège, Belgium
R. Jérôme
Affiliation:
Interfacultary Biomaterial Centre, University of Liège, Belgium CERM (Center for Education & Research on Macromolecules), University of Liège, Belgium
I. Barakat
Affiliation:
Interfacultary Biomaterial Centre, University of Liège, Belgium
L. Sartore
Affiliation:
Dip. di Chimica e Fisica per l'Ingegneria e i Materiali, Università di Brescia, Brescia, Italy
Get access

Abstract

Potential of polymerization in inverse microemulsions has been illustrated by the preparation of crosslinked nanoparticles with functional groups on the surface. Nonbiodegradable polyacrylamide nanoparticles have been prepared, with the purpose to use these stable monodisperse lattices as enzymatic reactors and in diagnostic applications. Their size is in the 50 to 90 nm range and they contain a model enzyme (alkaline phosphatase) immobilized. In another example, monodisperse biodegradable nanoparticles of polyamidoamines with a size from 90 to 130 nm have been prepared. They are envisioned for intravenous administration because of a low content of non-metabolized material and absence of toxicity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Danielson, I., Lindmann, B., Colloids Surfaces, 3, 391 (1981)Google Scholar
2.a) Daubresse, C., Grandfils, C., Jérôme, R., Teyssié, P., J. Colloid and Interface Sci. 168, 222 (1994)-Google Scholar
b) Daubresse, C., Grandfils, C., Jérôme, R., Teyssié, P., Colloid Polym. Sci. 274, 482 (1996)Google Scholar
3.a) Fletcher, P.D.I., Howe, A.M., Robinson, B.H., J. Chem. Soc. Faraday Trans. I 83, 985 (1987)-Google Scholar
b) Bommarius, A.S., Holzworth, J.F., Wang, D.I.C., Hatton, T.A., J. Phys. Chem. 94, 7232 (1990)-Google Scholar
c) Sarcar, S., Munshi, N., Jain, T.K., Maitra, A.N., Colloids Surf. A 88, 169 (1994)Google Scholar
4. Ferruti, P., Marchisio, M. A., Barbucci, R., Polymer 26, 1336 (1985)Google Scholar
5. Bignotti, F., Sozzani, P., Ranucci, E., Ferruti, P., Macromolecules 27, 7171 (1994)Google Scholar
6.a) Candau, F., Macromol. Symp. 92, 169 (1995)-Google Scholar
b) Leong, Y. S., Candau, S., Candau, F., In Surfactants in Solution; Mittal, K.L., Lindman, M., Eds; Plenum: New-York, 1984; Vol.3, p.1897 Google Scholar
7. Antonietti, M., Basten, R., Lohman, S., Macromol. Chem. Phys. 196, 2,441 (1995)Google Scholar