Skip to main content Accessibility help

Polymeric Carbon Dioxide

  • Choong-Shik Yoo (a1)


Synthesis of polymeric carbon dioxide has long been of interest to many chemists and materials scientists. Very recently we discovered the polymeric phase of carbon dioxide (called CO2-V) at high pressures and temperatures. Our optical and x-ray results indicate that CO2-V is optically non-linear, generating the second harmonic of Nd: YLF laser at 527 nm and is also likely superhard similar to cubic-boron nitride or diamond. COz-V is made of CO4 tetrahedra, analogous to SiO2 polymorphs, and is quenchable at ambient temperature at pressures above 1 GPa. In this paper, we describe the pressure-induced polymerization of carbon dioxide together with the stability, structure, and mechanical and optical properties of polymeric CO2-V. We also present some implications of polymeric CO2 for high-pressure chemistry and new materials synthesis.



Hide All
1. Yoo, C.S., Cynn, H., Nicol, M., submitted (1999).
2. Iota, V., Yoo, C.S., Cynn, H., Science 283, 1510 (1999).
3. Yoo, C.S. et al. , Phys. Rev. Lett. (1999) in print.
4. Vos, W.L.. Finger, L.W., Hemley, R.J., Hu, J.Z., Mao, H.K., and Schouten, J.A., Nature 358, 46 (1992).
5. Weir, S.T., Mitchell, A.C., Nellis, W.J., Phys. Rev. Lett. 76, 1860 (1996).
6. Goncharov, A.F., Struzhkin, V.V., Somayazulu, M.S., Hemley, R.J., Mao, H.K., Science 273, 218 (1996).
7. Liu, A.Y. and Cohen, M.L., Science 245, 842 (1989).
8. Mailhiot, C., Yang, L.H., McMahan, A.K., Phys. Rev. B 56, 140 (1992).
9. Parker, L.J., Atou, T., Badding, J.V., Science 273, 95 (1996).
10. Meer, R. van der, German, A.L., and Heikens, D., Poly. Sci. 15, 1765 (1977).
11. Lorenzana, H.; a private communication
12. Aoki, K., Yamawaki, H., Sakashita, M., Gotoh, Y., and Takemura, K., Science 263, 356 (1994).
13. Etters, R.D. and Bogdan, K., J. Chem. Phys. 90, 4537 (1989).
14. Olijnyk, H. and Jephcoat, A.P., Phys. Rev. B 57, 879 (1998).
15. The correspondence between the mode frequencies for the two structures can be estimated by considering the ration of the reduced vibrational masses for the symmetric stretching modes in singly bonded C-O-C and Si-O-Si structures. The angle between the two X-O single bonds is chosen to match the bond angle in α-quartz (104.6°). The low frequency limit (398 cm) results from considering isolated structures (X20 molecules) while the upper frequency (491 cm−1) results by considering the second order shell of O atoms moving rigidly with the C (Si).
16. Hemley, R.J., in High Pressure Research in Mineral Physics, edited by Manghnani, M. H. and Syono, Y., pp 347, (Terra Sci. Pub. Co., Tokyo, 1987).
17. Sharma, S.K., Mammone, J.F., Nicol, M.F., Nature 292, 140 (1981).
18. Jorgensen, J.D., J. Appl. Phys. 49, 5473 (1973).
19. Pryde, A.K.A. and Dove, M.T., Phys. Chem. Minerals, 26, 171 (1998).
20. Dombal, R.F. de and Carpenter, M.A., Eur. J. Mineral 5, 607 (1993) and references therein.
21. Graetsch, H. and Flirke, O.W., Zeitschrift for Kristallographic 195, 31 (1991).
22. Knittle, E., “Mineral Physics and Crystallography, a Handbook of Physical Constants” Edited by Ahrens, T., pp 98142 (AGU, 1995); Knittle et al., Nature 337, 349 (1989).
23. Olinger, B., J. Chem. Phys. 77, 6255 (1982).
24. Knittle, E., “Static Compression Measurements of Equation of State” in “Mineral Physics and Crystallography, a Handbook of Physical Constants” Edited by Ahrens, T., pp 98142 (AGU, 1995) and the references therein.
25. Knittle, E., Wentzcovitch, R.M., Jeanloz, R., Cohen, M.L., Nature 337, 349 (1989).
26. Driscoll, T.J. and Lawandy, N.M., J. Opt. Soc. Am. B11, 355 (1994).
27. Sasaki, Y. and Ohmori, Y., Appl. Phys. Lett. 39, 466 (1981).
28. In general, the second harmonic of light is generated in non-centrosymmetric crystals; whereas, only odd harmonic are observed in centrosymmetric crystals. This stems from the second order polarization dependence of electromagnetic transitions. In crystals having a center of symmetry, the inversion of all coordinates must leave all relationships between physical quantities unchanged. Because the electric field E is odd under inversion operations, the polarization field P must also be odd, and the coefficients of all even powers in the expansion of the polarization: P = ωoX1, Esin (ωt) + ωoX2 E2 sin2 (ωt) + ωoX3 E3 sin3(ωt) +… must vanish. In such crystals, only odd multiples of the incident frequency can be generated.
29. Wyckoff, R.W.G. in Crystal Structures, vol 1, 2nd ed., pp 467 (Intersci., New York, 1963).
30. Stishov, S.M. and Popova, V., Geochem, Eng. Trans. 10, 923 (1961).
31. Yoo, C.S. and Nicol, M.F., J. Phys. Chem. 90, 6726 (1986); ibid 90, 6732 (1986).
32. Katz, A.I., Schiferl, D., and Mills, R.L., J. Phys. Chem. 88, 3176 (1981).
33. Gauthier, M., Pruzan, P., Chervin, J.C., and Besson, J.M., Phys. Rev. B 37, 2102 (1988).
34. Hanfland, M., Hemley, R.J., Mao, H.K., Phys. Rev. Lett. 70, 3760 (1993).
35. Akahama, Y., Kawamura, H., Carlson, S., Bihan, T. Le, and Hasermann, D., the abstract in a proceedings to the AIRAPT-17, Hawaii, July 25-30, 1999, p72; also L. Ulivi, R. Bini, F. Gorelli, M. Santoro, ibid, p73.

Polymeric Carbon Dioxide

  • Choong-Shik Yoo (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed