Skip to main content Accessibility help
×
Home

Polymer electrical bistable device and memory cells

  • Jianyong Ouyang (a1), Chih-Wei Chu (a1), Ankita Prakash (a1) and Yang Yang (a1)

Abstract

Electrical bistable states with the conductivity different by more than four orders in magnitude were observed in a polymer film sandwiched between two metal electrodes. This polymer film was composed of gold nanoparticles, 8-hydroxyquinoline and polystyrene, and was formed by a solution process. The film can be programmed between the two electrical states by an electric field. The as-prepared device, which was in a low conductivity state, exhibited an abrupt increase of current when the device was scanned up to 2.8 volt (V). The high conductivity state can be returned to the low conductivity state at a voltage of –1.8 V in the reverse direction. The device has a good stability in both the states. The transitions are nonvolatile, and the transition from the low to the high conductivity state takes place in nanoseconds, so that the device can be used as a low-cost, high-density, high-speed, and nonvolatile memory. The switching mechanism was studied by investigating the current-voltage characteristics, the temperature dependence of the current, the surface potential atomic force microscopy and the energy levels of the materials. The electronic transition is attributed to the electric-field induced charge transfer between the gold nanoparticles and 8-hydroxyquinoline molecules.

Copyright

References

Hide All
1. Burroughes, J. H., J. H., et al. Nature 347, 539 (1990).
2. Tang, C. W. and Vanslyke, S. A., Appl. Phys. Lett. 51, 913 (1987).
3. Sariciftci, N. S., Smilowitz, L., Heeger, A. J. and Wudl, F., Sciene 258, 1474 (1992).
4. Dimitrakopoulos, C. D. and Mascaro, D. J., IBM J. Res. Dev. 45, 11 (2001).
5. Furukawa, T., Adv. Colloid Interface Sci. 71–72, 183 (1997).
6. Potember, R. S., Poehler, T. O. and Benson, R. C., Appl. Phys. Lett. 34, 405 (1982).
7. Oyamada, T., Tanaka, H., Matsushige, K., Sasabe, H. and Adachi, C., Appl. Phys. Lett. 83, 1252 (2003).
8. Ma, L. P., Liu, J., and Yang, Y., Appl. Phys. Lett. 80, 2997 (2002).
9. Ma, L. P., Pyo, S., Ouyang, J., Xu, Q. F. and Yang, Y., Appl. Phys. Lett. 82, 1419 (2003).
10. Bozano, L. D., Kean, B. W., Deline, V. R., Salem, J. R., and Scott, J. C., Appl. Phys. Lett. 84, 607 (2004).
11. Möller, S., Perlov, C., Jackson, W., Taussig, C., and Forrest, S. F., Nature 426, 166 (2003).
12. Ouyang, J., Chu, C.-W., Szmanda, C., Ma, L. and Yang, Y., Nature Materials 3, 891 (2004).
13. Hostetler, M.J. et al. Langmuir 14, 17 (1998).
14. Chen, Y., Y, . et al. Appl. Phys. Lett. 82, 1610 (2003).
15. Tsujioka, T., and Kondo, H., Appl. Phys. Lett. 83, 937 (2003).
16. Wang, W., Lee, T., and Reed, M. A., Phys. Rev. B 68, 035416 (2003).
17. Prout, C. K. and Wheeler, A. G., J. Chem. Soc. A, 469 (1967).
18. Castellano, E. and Prout, C. K., J. Chem. Soc. A, 550 (1971).
19. Adams, D. M., J. Phys. Chem. B 107, 6668 (2003).
20. Ipe, B. I., Thomas, K. G., Barazzouk, S., Hotchandani, S., and Kamat, P. V., J. Phys. Chem. B 106, 18 (2002).
21. Oyamada, T., Tanaka, H., Matsushige, K., Sasabe, H. and Adachi, C., Appl. Phys. Lett. 83, 1252 (2003).
22. Mo, X. L., et al. Thin Solid Films 436, 259 (2003).
23. Chen, S., S, . et al. Science 280, 2098 (1998).
24. Hicks, J. F., et al. Anal. Chem. 71, 3703 (1999).

Related content

Powered by UNSILO

Polymer electrical bistable device and memory cells

  • Jianyong Ouyang (a1), Chih-Wei Chu (a1), Ankita Prakash (a1) and Yang Yang (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.