Skip to main content Accessibility help
×
Home

Polyimide Nanofoams For Low Dielectric Applications

  • K. R. Carter (a1), H. J. Cha (a1), R. A. Dipietro (a1), C. J. Hawker (a1), J. L. Hedrick (a1), J. W. Labadie (a1), J. E. Mcgrath (a2), T. P. Russell (a1), M. I. Sanchez (a1), S. A. Swanson (a1), W. Volksen (a1) and D. Y. Yoon (a1)...

Abstract

Foamed polyimides have been developed in order to obtain thin film dielectric layers with very low dielectric constants for use in microelectronic devices. In these systems the pore sizes are in the nanometer range, thus, the term “nanofoam”. The polyimide foams are prepared from block copolymers consisting of thermally stable and thermally labile blocks, the latter being the dispersed phase. Foam formation is effected by thermolysis of the thermally labile block leaving pores the size and shape corresponding to the initial copolymer morphology. Nanofoams prepared from a number of polyimides as matrix materials, were investigated as well as a number of thermally labile polymers. The foams were characterized by a variety of experiments including, TEM, SAXS, WAXD, DMTA, density measurements, refractive index measurements and dielectric constant measurements. Thin film foams, with high thermal stability and dielectric constants approaching 2.0, can be prepared using the copolymer/nanofoam approach.

Copyright

References

Hide All
1. Polymers for Electronic Applications, edited by Lai, J. H. (CRC Press, Boca Raton, Florida, 1989).
2. Herminghaus, S., Boeese, D., Yoon, D. Y., and Smith, B. A., Appl. Phys. Lett. 59, 104 (1991).
3. Haider, M., Chenevey, E., Vora, R. H., Cooper, W., Glick, M. and Jaffe, M., Mater. Res. Soc. Symp. Proc., 1991, 227, 379.
4. Auman, B. C. and Trofimenko, S., Polym. Prep. 34(2), 244 (1992).
5. Auman, B. C., Adv. Polyimide Sci. Technol., Proc. 4th Int. Conf. Polyimides, Meeting Date 1991, edited by Feger, C., Khojasteh, M. M., Htoo, M. S. (Publisher: Technomic, Lancaster, PA, 1993) pp 1532..
6. Smearing, R. W. and Floryan, D. C., US Patent No. 4 535 365 (1985).
7. Krutchen, C. M. and Wu, P., US Patent No. 4 535 100 (1985).
8. Hoki, T. and Matsuki, Y., European Patent No. 186308 (1986).
9. Meyers, R. A., J. Polym. Sci. A-1.7, 2757 (1969).
10. Carleton, P. S., Farrisey, W. J. and Rose, J. S., J. Appl. Polym. Sci. 16, 2983 (1972).
11. Narkis, M., Paterman, M., Boneh, H. and Kenig, S., Polym. Eng. Sci. 22, 417 (1982).
12. Gagliani, J. and Supkis, D. E., Adv. Astronaut. Sci. 38, 193 (1979).
13. Labadie, J. W., Hedrick, J. L., Wakharkar, V., Hofer, D. C. and Russell, T. P., IEEE Trans. Compon., Hybrids, Manuf. Technol. 15, 925 (1992).
14. Hedrick, J. L., Labadie, J. W., Russell, T. P., Hofer, D. C. and Wakharkar, V., Polymer 34, 4717 (1993).
15. Hedrick, J. L., Labadie, J. W., Russell, T. P., Wakharkar, V. and Hofer, D. C. in Avd. Polyimide Sci. Technol., Proc. Int. Conf. Polyimides, edited by Feger, C. L., M., M Khojasteh, Htoo, M. S. and Maung, S. (Technomic, Lancaster, PA, 1993).
16. Carter, K. R., Labadie, J. W., DiPietro, R. A., Sanchez, M. I., Russell, T. P., Swanson, S. A., Auman, B. C., Lakshmanan, P. and McGrath, J. E., Proc. Polym. Mat. Sci. Eng. 72, 383 (1995).
17. Jayaraman, S., Srinivas, S., Wilkes, G. L., McGrath, J. E., Hedrick, J. L., Volksen, W. and Labadie, J. W., Polym. Prep. 35(1), 347 (1994).
18. Volksen, W., Sanchez, M. I., Cha, H. J. and Yoon, D. Y., Polym. Prep. 36(1), 709 (1995).
19. Russell, T. P., Sanchez, M. I. and Hedrick, J. L., J. Polym Sci., Phys. Chem. 33(2), 247 (1995).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed