Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-06T08:46:14.262Z Has data issue: false hasContentIssue false

Polygermyne: Germanium sheet polymers with efficient near-infrared luminescence

Published online by Cambridge University Press:  21 March 2011

Günther Vogg
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, D-85748 Garching, Germany
Martin S. Brandt
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, D-85748 Garching, Germany
Lex J.-P. Meyer
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, D-85748 Garching, Germany
Martin Stutzmann
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, D-85748 Garching, Germany
Zoltán Hajnal
Affiliation:
Theoretische Physik, Universität Paderborn, Warburger Str. 100, D-33095 Paderborn, Germany
Bernadett Szücs
Affiliation:
Theoretische Physik, Universität Paderborn, Warburger Str. 100, D-33095 Paderborn, Germany
Thomas Rauenheim
Affiliation:
Theoretische Physik, Universität Paderborn, Warburger Str. 100, D-33095 Paderborn, Germany
Get access

Abstract

The structural, optical and electronic properties of the Ge sheet polymer poylgermyne are summarized. Prepared via topotactic transformation of Zintl-phase CaGe2, (GeH)n forms a layered crystal in a tr6 stacking sequence with a distance of 5.65 Å between adjacent layers. The photoluminescence at 1.3 eV is excited nearly resonantly with a Stokes shift of 0.2 eV. Together with band structure calculations this shows that polygermyne has a direct band gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wöhler, F., Lieb. Ann. 127, 257 (1863).Google Scholar
[2] Hirabayashi, I., Morigaki, K., Yamanaka, S., J. Non.-Cryst. Solids 59&60, 645 (1983).Google Scholar
[3] Brandt, M.S., Fuchs, H.D., Höpner, A., Rosenbauer, M., Stutzmann, M., Weber, J., Cardona, M., Queisser, H.J., Mat. Res. Soc. Symp. Proc. 262, 849 (1992).Google Scholar
[4] Dettlaff-Weglikowska, U., Hönle, W., Molassioti-Dohms, A., Finkenbeiner, S., Weber, J., Phys. Rev. B 56, 13132 (1997).Google Scholar
[5] Schott, G., Z. Chemie (Leipzig) 6/7, 194 (1962).Google Scholar
[6] Vogg, G., Brandt, M.S., Stutzmann, M., Adv. Mat. 12, 1278 (2000).Google Scholar
[7] Vogg, G., Brandt, M.S., Stutzmann, M., Genchev, I., Bergmaier, A., Görgens, L., Dollinger, G., J. Cryst. Gr. 212, 148, (2000).Google Scholar
[8] Vogg, G., Brandt, M.S., Stutzmann, M., Albrecht, M., J. Cryst. Gr. 203, 570 (1999).Google Scholar
[9] Beyer, W., Herion, J., Wagner, H., Zastrow, U., Philos. Mag. B 63, 269 (1991).Google Scholar
[10] Brandt, M.S., Rosenbauer, M., Stutzmann, M., Mat. Res. Soc. Symp. Proc. 298, 301 (1993).Google Scholar
[11] Hajnal, Z., Vogg, G., Meyer, L. J. P., Szücs, B., Brandt, M. S., Frauenheim, T., Phys. Rev. B 64, 033311 (2001).Google Scholar
[12] Walle, C.G. Van de, Northrup, J.E., Phys. Rev. Lett. 70, 1116 (1993).Google Scholar