Skip to main content Accessibility help

Polycrystalline Silicon Thin Film Formed By Multiple Pulsed Rapid Thermal Annealing – Intrinsic a-Si Film Thickness Effect

  • Yue Kuo (a1) and Chi-Chou Lin (a1)


The polycrystalline n+/intrinsic silicon thin film stacks with various original intrinsic amorphous silicon layer thicknesses were formed using the multiple pulsed rapid thermal annealing process with the Ni-induced crystallization mechanism. The thick polycrystalline silicon stack was prepared by repeated steps of 1) amorphous silicon thin film deposition, 2) solution oxidation, 3) dehydrogenation, 4) pulsed rapid thermal annealing, and 5) oxide stripping. The poly-Si film properties, such as the grain size, orientation, and volume fraction of the crystalline phase, were related to the original intrinsic silicon film thickness and the total thermal budget. This process is effective in preparing the high volume fraction polycrystalline silicon thin film, which is important for low-cost thin-film solar cells, electronic and optoelectronic devices.



Hide All
1. Schropp, R. E. I., Franken, R. H., Goldbach, H. D., Houweling, Z. S., Li, H., Rath, J. K., Schüttauf, J. W. A., Stolk, R. L., Verlaan, V. and van der Welf, C. H. M., Thin Solid Films 516, 496499 (2008)
2. Matsuyama, T., Terada, N., Baba, T., Sawada, T., Tsuge, S., Wakisaka, K. and Tsuda, S., J. Non-Cryst. Solids 198-200, 940944 (1996)
3. Lee, S.-W. and Joo, S.-K., IEEE T. Electron Dev. 17, 160162 (1996)
4. Terai, F., Kobayashi, H., Katsui, S., Sato, Y., Nagatomo, T. and Homma, T., Jpn. J. Appl. Phys. 44, 125130 (2005)
5. Matsuyama, T., Baba, T., Takahama, T., Tsuda, S. and Nakano, S., Sol. Energy Mater. Sol. Cells 34, 285289 (1994)
6. Yoon, S. Y., Kim, S. K., Oh, J. Y., Choi, Y. J., Shon, W. S., Kim, C. O. and Jang, J., Jpn. J. Appl. Phys. 37, 71937197 (1998)
7. Kuo, Y., ECS Proc., 96-23, 3035 (1996)
8. Kuo, Y. and Kozlowski, P. M., Appl. Phys. Lett. 69, 10921094 (1996)
9. Kuo, Y., Lin, C.-H. and Zhu, M., Conf. Rec. IEEE Photovoltaic Spec. Conf. 36983701 (2010)
10. Zhu, M., Kuo, Y. and Lin, C.-H, Mater. Res. Soc., 1321, a0305 (2011)
11. Chen, Y.-C., Chao, Y.-C., and Wu, Y.C., ECS Trans. 33(5), 165168 (2010)
12. Kawazu, Y., Kudo, H., Onari, S., and Arai, T., Jpn. J. Appl. Phys. 29, 26982704 (1990)
13. Pretorius, R., Theron, C. C., and Maraia, T. K., Mat. Chem. Phys. 36, 3138 (1993)
14. Hayzelden, C., Batstone, J. L., and Cammarata, R. C., Appl. Phys. Lett. 60, 225227 (1992)
15. Hwang, J.-D, Chang, J.-Y. and Wu, C.-Y., Appl. Surf. Sci. 249, 6570 (2005)
16. Johnson, B. C., Caradonna, P. and McCallum, J. C., Mater. Sci. Eng. B 157, 610 (2009)
17. Hwang, J.-D, Chang, J.-Y. and Wu, C.-Y., Appl. Surf. Sci. 249, 6570 (2005)
18. Wang, K.C., Yew, T. R., Hwang, H.L., Appl. Phys. Lett. 92, 99105 (1996)
19. Bonera, E., Fanciulli, M. and Mariani, M., Appl. Phys. Lett. 87, 111913 (2005)
20. Lengsfeld, P., Nickel, N. H. and Genzel, Ch., Fuths, W., J. Appl. Phys. 91, 9128 (2002)
21. Georgi, C., Hecker, M. and Zschech, E., J. Appl. Phys. 101, 123104 (2007)



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed