Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T05:54:31.305Z Has data issue: false hasContentIssue false

Polyaniline: Interrelationships Between Molecular Weight, Morphology, Donnan Potential and Conductivity

Published online by Cambridge University Press:  25 February 2011

Alan G. Macdiarmid
Affiliation:
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104–6323
Arthur J. Epstein
Affiliation:
Department of Physics & Department of Chemistry, The Ohio State University, Columbus, OH 43210–1106
Get access

Abstract

Methods for significantly increasing the molecular weight of polyaniline are described. The conductivity of doped polyaniline is shown to be more directly dependent on its degree of alignment/crystallinity than on its molecular weight. The tensile strength of polyanilines films and fibers increases with increasing stretch alignment. An interpenetrating polymer system involving polyaniline which shows greatly enhanced conductivity at pH values where polyaniline has negligible conductivity is described. The doping level of polyaniline is shown to be dependent not only on the pH of the dopant medium but also on the presence of dissolved neutral salts. This new phenomenon is explained in terms of Donnan equilibrium effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. MacDiarmid, A. G. and Epstein, A. J., Faraday Discuss‥ Chem. Soc., 88, 317 (1989), and references therein;Google Scholar
Chiang, J. -C. and MacDiarmid, A. G., Synth., 13, 193 (1986);Google Scholar
MacDiarmid, A. G., Chiang, J. -C., Richter, A. F. and Epstein, A. J., Synth. Met., 18., 285 (1987).Google Scholar
2. Manohar, S. K., MacDiarmid, A. G. and Epstein, A. J., Bull. Am. Phys. Sor., 34, 582 (1989).Google Scholar
3. MacDiarmid, A. G. and Epstein, A. J., in Conjugated Polymeric Materials: Opportunities in Electronics. Optoelectronics, and Molecular Electronics, Brédas, J. L. and Chance, R. R., eds., (Kluwer Academic Publishers, Netherlands), p. 53 (1990).Google Scholar
4. MacDiarmid, A. G. and Epstein, A. J., in Science and Applications of Conducting Polymers, Salaneck, W. R., Clark, D. T. and Samuelsen, E. J., eds., (Adam Hilger, Bristol, U.K.), p. 117 (1990).Google Scholar
5. Manohar, S. K., King, R. C. -Y., MacDiarmid, A. G. and Epstein, A. J., unpublished observations (1991).Google Scholar
6. Manohar, S. K., Fagot, A., MacDiarmid, A. G. and Epstein, A. J., unpublished observations (1991).Google Scholar
7. Manohar, S. K., Tang, X., Hsu, C., MacDiarmid, A. G. and Epstein, A. J., unpublished observations (1991).Google Scholar
8. Scherr, E. M., MacDiarmid, A. G., Manohar, S. K., Masters, J. G., Sun, Y., Tang, X., Druy, M. A., Glatkowski, P. J., Cajipe, V. B., Fischer, J. E., Cromack, K. R., Jozefowicz, M. E., Ginder, J. M., McCall, R. P., and Epstein, A. J., Synth. Met, A1, 735 (1991);Google Scholar
Fischer, J.E., Tang, X., Scherr, E. M., Cajipe, V. B., and MacDiarmid, A. G., Synth. Mat, 41, 661 (1991).Google Scholar
9. Min, Y. G., MacDiarmid, A. G. and Epstein, A. J., unpublished observations (1991).Google Scholar
10. Asturias, G. E., MacDiarmid, A. G. and Epstein, A. J., unpublished observations (1991).Google Scholar
11. Yue, J. and Epstein, A. J., J. Am. Chem. Sor., 112, 2800 (1990).Google Scholar
12. Asturias, G. E., Jang, G. W., Scherr, E. M., MacDiarmid, A. G., Zhong, C., Doblhofer, K. and Reiss, H., Bull. Am. Phys. Son., 36, 781 (1991)Google Scholar