Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-19T09:13:10.610Z Has data issue: false hasContentIssue false

Polarized Neutron Reflectivity Measurements of Collinear and Non-Collinear Magnetic Structures in Fe/Cr (100) Superlattices

Published online by Cambridge University Press:  03 September 2012

J.F. Ankner
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
A. Schleyer
Affiliation:
Ruhr Universität Bochum, D-4630 Bochum, Federal Republic of Germany
Th. Zeidler
Affiliation:
Ruhr Universität Bochum, D-4630 Bochum, Federal Republic of Germany
C.F. Majkrzak
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
H. Zabel
Affiliation:
Ruhr Universität Bochum, D-4630 Bochum, Federal Republic of Germany
J.A. Wolft
Affiliation:
Forschungszentrum Jülich, D-5170 Jülich, Federal Republic of Germany
P. Grünbergt
Affiliation:
Forschungszentrum Jülich, D-5170 Jülich, Federal Republic of Germany
Get access

Abstract

We have used polarized neutron reflectivity to study the magnetic microstructure of two Fe/Cr (100) superlattices grown by molecular beam epitaxy. The first film, of nominal composition [0.9 nm Cr/5.5 nm Fe]5, and atomically sharp interfaces, exhibits classical collinear antiferromagnetic structure. The other film ([1.2 nm Cr/5.5 nm Fe]5), grown at a higher temperature, shows the field-dependent non-collinear features attributed to biquadratic coupling. We will describe these measurements and our preliminary structural analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M.B., and Sowers, H., Phys. Rev. Lett. 57, 2442 (1986).Google Scholar
2. Baibich, M.N., Broto, J.M., Fért, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friedrich, A., and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
3. Binasch, G., Grünberg, P., Saurenbach, F., and Zinn, W., Phys. Rev. B 39, 4828 (1989).Google Scholar
4. Parkin, S.S.P., More, N., and Roche, K.P., Phys. Rev. Lett. 64, 2304 (1990).Google Scholar
5. Grünberg, P., Demokritov, S., Fuss, A., Vohl, M., and Wolf, J.A., J. Appl. Phys. 69, 4789 (1991).Google Scholar
6. Unguris, J., Celotta, R.J., and Pierce, D.T., Phys. Rev. Lett. 67, 140 (1991).Google Scholar
7. Purcell, S.T., Folkerts, W., Johnson, M.T., McGee, N.W.E., Jager, K., aan de Stegge, J., Zeper, W.B., Hoving, W., and Grünberg, P., Phys. Rev. Lett. 67, 903 (1991).Google Scholar
8. Demokritov, S., Wolf, J.A., Grünberg, P., and Zinn, W., in Magnetic Surfaces, Thin Films, and Multilayers, edited by Parkin, S.S.P., Hopster, H., Renard, J.-P., Shinjo, T., Zinn, W., volume 231 of Materials Research Society Symposium Proceedings, page 133, Pittsburgh, 1992, Materials Research Society.Google Scholar
9. Rührig, M., Schäfer, R., Hubert, A., Mosler, R., Wolf, J.A., Demokritov, S., and Grünberg, P., Phys. Status Solidi A 125, 635 (1991).Google Scholar
10. Barthélé, A., Fert, A., Baibich, M.N., Hadjoudj, S., Petroff, F., Etienne, P., Cabanel, R., Lequien, S., Nguyen Van Dau, F., and Creuzet, G., J. Appl. Phys. 67, 5908 (1990).Google Scholar
11. Hosoito, N., Araki, S., Mibu, K., and Shinjo, T., J. Phys. Soc. Jpn. 59, 1925 (1990).Google Scholar
12. Parkin, S.S.P., Mansour, A., and Felcher, G.P., Appl. Phys. Lett. 58, 1473 (1991).Google Scholar
13. Bland, J.A.C., Johnson, A.D., Lauter, H.J., Bateson, R.D., Blundell, S.J., Shackleton, C., and Penfold, J., J. Magn. Magn. Mater. 93, 513 (1991).Google Scholar
14. Hosoito, N., Mibu, K., Araki, S., Shinjo, T., Itoh, S., and Endoh, Y., J. Phys. Soc. Jpn. 61, 300 (1992).Google Scholar
15. Löwenhaupt, M., Hahn, W., Huang, Y.Y., Felcher, G.P., and Parkin, S.S.P., to be published in Int. J. Phys. B.Google Scholar
16. Demokritov, S., Wolf, J.A., and Grünberg, P., Europhys. Lett. 15, 881 (1991).Google Scholar
17. Wolf, J.A., Leng, Q., Schreiber, R., Grünberg, P., and Zinn, W., to be published in J. Magn. Magn. Mater.Google Scholar
18. Leng, Q., Wolf, J.A., Grünberg, P., and Zinn, W., to be published in Int. J. Phys. B.Google Scholar
19. Sivardiere, P.J., Acta Crystallogr. Sect. A 31, 340 (1975).Google Scholar
20. Belyakov, V.A. and Bokun, R.Ch., Fiz. Tverd. Tela (Leningrad) 18, 2399 (1976), [Sov. Phys. Solid State 18, 1399 (1976)].Google Scholar
21. Mendiratta, S.K. and Blume, M., Phys. Rev. B 14, 144 (1976).Google Scholar
22. Felcher, G.P., Hilleke, R.O., Crawford, R.K., Haumann, J., Kleb, R., and Ostrowski, G., Rev. Sci. Instrum. 58, 609 (1987).Google Scholar
23. Majkrzak, C.F., Physica B 173, 75 (1991).Google Scholar
24. Ankner, J.F. and Majkrzak, C.F., in Neutron Optical Devices and Applications, edited by Majkrzak, C.F. and Wood, J.L., volume 1738 of Proc. SPIE, page 260, Bellingham, Wash. 1992, SPIE.Google Scholar
25. Ankner, J.F., Schreyer, A., Majkrzak, C.F., Bröhl, K., Zeidler, Th., Bödeker, P., and Zabel, H., in this volume.Google Scholar