Skip to main content Accessibility help
×
Home

Polarization-Induced 3-Dimensional Electron Slabs in Graded AlGaN Layers

  • John Simon (a1), Kejia Wang (a2), Huili Xing (a3), Debdeep Jena (a4) and Siddharth Rajan (a5)...

Abstract

By compositionally grading AlGaN layers over different thicknesses, high mobility electron gases are produced by polarization-induced doping. Temperature dependent Hall and capacitance-voltage measurements were performed on these AlGaN layers, and two degrees of freedom are found for choosing the carrier concentration of these slabs. Carrier mobilities determined from Hall measurements are observed to be much higher than impurity doped structures of similar carrier densities. Alloy and phonon scattering are determined to be the major contributors limiting the mobility of the electron in the graded layers. This form of polarization-induced doping offers an attractive alternative to the traditional doping techniques, and may be used for highly conductive AlGaN layers with high Al composition, both for lateral and vertical transport.

Copyright

References

Hide All
[1] Pearton, S. J., Abernathy, C. R., Overberg, M. E., Thaler, G. T., Norton, D. P., Theodoropoulou, N., Hebard, A. F., Park, Y. D., Ren, F., Kim, J., and Boatner, L. A.. J. Appl. Phys., 93, 2003.
[2] Kozodoy, P., Smorchkova, I. P., Hansen, M., Xing, H., DenBaars, S. P., Mishra, U. K., Saxler, A. W., Perrin, R., and Mitchel, W. C.. J. Appl. Phys., 75:2444, 1999.
[3] Pophristic, M., Guo, S. P., and Peres, B.. Appl. Phys. Lett., 82(24):4289, 2003.
[4] Bernardini, F., Fiorentini, V., and Vanderbilt, D.. Phys. Rev. B, 56:R10 024, 1997.
[5] Jena, D., Heikman, S., Green, D., Buttari, D., Coffie, R., Xing, H., Keller, S., DenBaars, S., Speck, J., Mishra, U. K., and Smorchkova‥, I. P. Appl. Phys. Lett., 81:4395, 2002.
[6] Chini, A., Wittich, J., Heikman, S., Keller, S., DenBaars, S. P., and Mishra, U. K.. Elec. Dev. Lett., 25(2):55, 2004.
[7] Snider, G. L.. 1DPoisson, http://www.nd.edu/~gsnider/.
[8] Kroemer, H., Chen, Wu-Yi Jr., Harris, J.S., and Edwall, D.D.. Appl. Phys. Lett., 36(4):295, 1980.
[9] Seeger, K.. Semiconductor Physics, An Introduction. Springer Verlag, Berlin, 6th edition, 1999.
[10] Look, D. C. and Molnar, R. J.. Appl. Phys. Lett., 70:3377, 1997.
[11] Jena, D., Gossard, A. C., and Mishra, U. K.Appl. Phy. Lett., 76:1707, 2000.
[12] Weimann, N. G., Eastman, L. F., Doppalapudi, D., Ng, H. M., and Moustakas, T. D.. J. Appl. Phys., 83:3656, 1998.
[13] Joyce, W. B. and Dixon, R. W.. Appl. Phys. Lett., 31:354, 1977.
[14] Hamaguchi, C. Basic Semiconductor Physics, page 280, 2001.
[15] Hsu, L. and Walukiewicz, W.. J. Appl. Phys., 89:1783, 2001.
[16] Khan, M. A. and Kuznia, J. N. and Olson, D. T. and George, T. and Pike, W. T‥ Appl. Phys. Lett., 63:3470, 1993.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed