Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T10:57:24.664Z Has data issue: false hasContentIssue false

Polarization Insensitivity in Interdiffused, Strained InGaAs/InP Quantum Wells

Published online by Cambridge University Press:  10 February 2011

Joseph Micallef
Affiliation:
Department of Microelectronics, University of Malta, Msida MSD06, Malta
James L. Borg
Affiliation:
Department of Microelectronics, University of Malta, Msida MSD06, Malta
Wai-Chee Shiu
Affiliation:
Department of Mathematics, Hong Kong Baptist University, Waterloo Road, Hong Kong
Get access

Abstract

Theoretical results are presented showing how quantum well disordering affects the TE and TM absorption coefficient spectra of In0.53Ga0.47As/InP single quantum wells. An error function distribution is used to model the constituent atom composition after interdiffusion. Different interdiffusion rates on the group V and group III sublattices are considered resulting in a strained structure. With a suitable interdiffusion process the heavy hole and light hole ground state, excitonic transition energies merge and the absorption coefficient spectra near the fundamental absorption edge become polarization insensitive. The results also show that this polarization insensitivity can persist with the application of an electric field, which is of considerable interest in waveguide modulators.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Suzuki, M., Tanaka, H., Edagawa, N., and Matsushima, Y., Lightwave, J. Technol. LT–10. 1912(1992).Google Scholar
2. Kotaka, I., Wakita, K., Kawano, K., Asai, H., and Naganuma, M., Electron. Lett. 27, 2162 (1991).Google Scholar
3. Ido, T., Sano, H., Moss, D.J., Tanaka, S., and Takai, A., IEEE Photon. Technol. Lett. 6. 1207. (1994).Google Scholar
4. Koch, T.L., Quantum, J. Electron. 27, 641 (1991).Google Scholar
5. Xia, W., Lin, S.C., Pappert, S.A., Hewett, C.A., Fernandes, M., Vu, T.T., Yu, P.K.L., and Lau, S.S.. Appl. Phys. Lett. 55, 2020 (1989).Google Scholar
6. Poole, P.J., Charbonneau, S., Dion, M., Aers, G.C., Buchanan, M., Goldberg, R.D., and Mitchell, I.V.. IEEE Photon. Technol. Lett. 8, 16 (1996).Google Scholar
7. Mitchell, J., Li, E.H., and Weiss, B.L., Appl. Phys. Lett. 67, 2768 (1995).Google Scholar
5. Aizawa, T., Ravikumar, K.G., Suzaki, S., Watanabe, T., and Yamauchi, R., IEEE J. Quantum Electron. 30, 585 (1994).Google Scholar
9. Razeghi, M., Archer, O., and Launay, F., Semicond. Sci. Technol. 2, 793 (1987).Google Scholar
10. Pape, I.J., Li Kam Wa, P., David, J.P.R., Claxton, P.A., Robson, P.N., and Sykes, D., Electron. Lett. 24. 910 (1988).Google Scholar
11. Schwarz, S.A., Mei, P., Venkatesen, T., Bhat, R., Hwang, D.M., Schwarz, C.L., Koza, M., Nazar, L., and Skromme, B.J.. Appl. Phys. Lett. 53, 1051 (1988).Google Scholar
12. Sumida, H., Asahi, H., Yu, S.J., Asami, K., Gonde, S., and Tanoue, H.. Appl. Phys. Lett. 54, 520 (1989).Google Scholar
13. GaInAsP Allov Semiconductors, ed. Pearsall, T.P., Wiley, New York, 1982, p. 295.Google Scholar
14. Schlesinger, T.E. and Kuech, T., Appl. Phys. Lett. 49. 519 (1986).Google Scholar
15. Micallef, J., Li, E.H., and Weiss, B.L., J. Appl. Phys. 73, 7524 (1993).Google Scholar
16. Micallef, J., Li, E.H., and Weiss, B.L., Superlatt. & Microstructures 13, 315 (1993).Google Scholar