Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T08:18:01.861Z Has data issue: false hasContentIssue false

Plasticity-Related Phenomena in Metallic Films on Substrates

Published online by Cambridge University Press:  15 February 2011

M. Legros
Affiliation:
CEMES-CNRS, 29 rue J. Marvig, 31055 Toulouse -, France
G. Dehm
Affiliation:
MPI fur Metallforschung, Heisenbergstr. 3, 70569 Stuttgart -, Germany
T.J. Balk
Affiliation:
MPI fur Metallforschung, Heisenbergstr. 3, 70569 Stuttgart -, Germany
E. Arzt
Affiliation:
MPI fur Metallforschung, Heisenbergstr. 3, 70569 Stuttgart -, Germany
O. Bostrom
Affiliation:
TECSEN Laboratory, Faculte des Sciences de St Jerome, 13397 Marseille -, France
P. Gergaud
Affiliation:
TECSEN Laboratory, Faculte des Sciences de St Jerome, 13397 Marseille -, France
O. Thomas
Affiliation:
TECSEN Laboratory, Faculte des Sciences de St Jerome, 13397 Marseille -, France
B. Kaouache
Affiliation:
LPM, Ecole des Mines, Parc de Saurupt, 54042 Nancy, France
Get access

Abstract

Plastic deformation due to thermal stresses has been investigated for different metallic films deposited on Si or α-alumina substrates. We conducted post-mortem TEM and SEM investigations of samples that underwent thermal cycles in order to capture the microstructural changes imposed by thermal stresses. The ultimate goal is to determine the dominant plasticity mechanisms responsible for such changes. In-situ thermal cycles performed inside the TEM allowed direct and real-time observations of dislocation behaviour under stress. It is shown that dislocation density drops in Al/Si, Au/Si and in Cu/α-alumina thin film systems. Except in the case of pseudo-epitaxial Cu on sapphire, the interaction of dislocations with the interfaces (passivation, oxide, adhesion layer) is attractive and leads to the disappearance of interfacial dislocations. In this light, the generalized observation of high tensile stresses that arise in metallic films at the end of cooling is explained in terms of insufficient dislocation sources instead of classic strain hardening. Diffusional processes can substitute for a lack of dislocation, but the low relaxation strain rate that would be excpected should lead to high stresses during the cooling stages of thermal cycles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Evans, A.G. and Hutchinson, J.W., Acta Met. Mat. 43 25072530 (1995).Google Scholar
2. Nix, W.D., Metall. Trans. A 20A 22172245 (1989).Google Scholar
3. Stoney, G.G., Proc. Roy. Soc. Lond. A 82 172 (1909).Google Scholar
4. Flinn, P.A., Gardner, D.S., and Nix, W.D., IEEE Trans. Electron. Dev. 34, 689 (1987).Google Scholar
5. Freund, L.B., J. Appl. Mech. 54, 553 (1987).Google Scholar
6. Kubin, L.P., “Dislocations and stress relaxation in heteroepitaxial films”, Stress and strain in epitaxy: theoretical concepts, measurements and applications., ed. Hanbücken, M. and Deville, J.-P.., (North Holland, 2001).Google Scholar
7. Thompson, C.V., J. Mater. Res. 8 237238 (1993).Google Scholar
8. Chaudari, P., Phil. Mag. A 39 507516 (1979).Google Scholar
9. Nix, W.D., Scripta Mater. 39 545554 (1998).Google Scholar
10. Dehm, G., Inkson, B.J., Balk, T.J., Wagner, T., and Arzt, E. in Dislocations and deformation mechanisms in thin films and small structures, edited by Kraft, O., Schwarz, K.W., Baker, S.P., Freund, L.B., (Mat. Res. Soc. Symp. Proc. 673, Pittsburgh PA, 2001) p. 619.Google Scholar
11. Inkson, B.J., Dehm, G., and Wagner, T., Acta Materialia 50 50335047 (2002).Google Scholar
12. Dehm, G., Inkson, B.J., and Wagner, T., Acta Materialia 50 50215032 (2002).Google Scholar
13. Weihnacht, V. and Bruckner, W., Acta Materialia 49 23652372 (2001).Google Scholar
14. Frost, H.J. and Ashby, M.F., Deformation mechanisms maps. 1982, Oxford: Pergamon Press.Google Scholar
15. Thouless, M.D., Annu. Rev. Mater. Sci. 25 6996 (1995).Google Scholar
16. Shen, Y.-L. and Suresh, S., Acta Met. Mat. 43 39153926 (1995).Google Scholar
17. Bostrom, O., Wafer shape control - Study of the reactivity in Ti/Al dual layers and its effect on the stress,. 2001, Université d'Aix-Marseille III, Faculté des Siences et Techniques de Saint-Jérôme: Marseille, France. p. 155.Google Scholar
18. Josell, D., Weihs, T.P., and Gao, H., MRS Bulletin 27 3944 (2002).Google Scholar
19. Gerth, D., Katzer, D., and Krohn, M., Thin solid films 208 6775 (1992).Google Scholar
20. Jawarani, D., Kawasaki, H., Yeo, I.-S., Rabenberg, L., Starck, J.P., and Ho, P.S., J. Appl. Phys. 82 171181 (1997).Google Scholar
21. Kraft, O., Freund, L.B., Philips, R., and Arzt, E., MRS Bulletin 27 3037 (2002).Google Scholar
22. Dehm, G., Weiss, D., and Arzt, E., Mat. Sci. & Eng. A 309-310 468472 (2001).Google Scholar
23. Kobrinsky, M.J. and Thompson, C.V., Acta Mat. 48 625633 (2000).Google Scholar
24. Dehm, G. and Arzt, E., Appl. Phys. Let., 77, 1126 (2003).Google Scholar
25. Dehm, G., Inkson, B., Wagner, T., Balk, T.J. and Arzt, E., J. Mater. Sci. Technol. 18, 2, 113117 (2003).Google Scholar
26. Legros, M., Dehm, G., Keller-Flaig, R.M., Arzt, E., Hemker, K.J., and Suresh, S., Mat. Sci. & Eng. (2000).Google Scholar
27. Legros, M., Hemker, K.J., Gouldstone, A., Suresh, S., Keller-Flaig, R.-M., and Arzt, E., Acta Mat. 50 34353452 (2002).Google Scholar
28. Leung, O.S., Studies in the strenghtening mechanisms of thin polycristalline gold films, Materials Science. 2001, Stanford University: Stanford.Google Scholar
29. Kaouache, B., Gergaud, P., Thomas, O., Bostrom, O., and Legros, M., Submitted to Microelectronic Engineering (2003).Google Scholar
30. Dalbec, T.R., Leung, O.S., and Nix, W.D. in Deformation, Processing, and Properties of Structural Materials., edited by Taleff, E.M., Syn, C.K., and Lesuer, R. (TMS - Miner. Metals & Mater. Soc, Warrendale, PA, 2000) pp. 95108.Google Scholar
31. Harris, K.E. and King, A.H., Acta Mat. 46 61956203 (1998).Google Scholar
32. Owusu-Boahen, K. and King, A.H., Acta Mat. 49 237247 (2001).Google Scholar
33. Witrouw, A., Proost, J., Roussel, P., Cosemans, P., and Maex, K., J. Mater. Res. 14 12461254 (1999).Google Scholar
34. Leusink, G.J., Lokker, J.P., Homberg, M.J.C.van den, Jongste, J.F., Oosterlaken, T.G.M., Janssen, G.C.A.M., and Radelaar, S., Appl. Surf. Sci. 91 215219 (1995).Google Scholar
35. Venkatraman, R. and Bravman, J.C., J. Mater. Res. 7, 2040 (1992).Google Scholar
36. Bader, S., Kalaugher, E.M., and Arzt, E., Thin Solid Films 263, 175 (1995).Google Scholar
37. Koike, J., Utsunomiya, S., Shimoyama, Y., Maruyama, K., and Oikawa, H., J. Mater Res. 13 32563264 (1998).Google Scholar
38. Thouless, M.D., Gupta, J., and Harper, M.J.E., J. Mater. Res. 8 18451852 (1993).Google Scholar
39. Shen, Y.-L., Suresh, S., He, M.Y., Bagchi, A., Kienzle, O., Ruhle, M., and Evans, A.G., J. Mater. Res. 13 19281937 (1998).Google Scholar
40. Baker, S.P., Keller, R.-M., and Arzt, E. in Mat. Res. Soc., edited by 1998.Google Scholar
41. Müllner, P. and Arzt, E. in Mat. Res. Soc. Symp. Proc., edited by 1998. Boston, MA.Google Scholar
42. Gao, H., Zhang, L., Nix, W.D., Thompson, C.V., and Arzt, E., Acta Materialia 47 28652878 (1999).Google Scholar
43. Weiss, D., Gao, H., and Arzt, E., Acta Materialia 49 23952403 (2001).Google Scholar
44. Hershkovitz, M., Blech, I.A., and Komem, Y., Th. Sol. Films 130 8793 (1985).Google Scholar
45. Kim, D.-K., Heiland, B., Nix, W.D., Arzt, E., Deal, M.D., and Plummer, J.D., Thin Solid Films 371 278282 (2000).Google Scholar
46. Dutta, I., Chen, M.W., Peterson, K., and Shultz, T., Journal of Electronic Materials 30 15371548 (2001).Google Scholar
47. Dehm, G., Balk, T.J., Edongue, H., and Arzt, E., submitted to Microelectronic Eng., 2003 Google Scholar