Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T21:09:05.580Z Has data issue: false hasContentIssue false

Plasticity, Dislocation Structures and Antiphase Boundary Energies in Fe3Al Single Crystals with Chromium

Published online by Cambridge University Press:  15 February 2011

Filip Král
Affiliation:
ETH Zürich, Institut für Angewandte Physik, CH-8093 Zürich, Switzerland.
Peter Schwander
Affiliation:
ETH Zürich, Institut für Angewandte Physik, CH-8093 Zürich, Switzerland.
Gernot Kostorz
Affiliation:
ETH Zürich, Institut für Angewandte Physik, CH-8093 Zürich, Switzerland.
Get access

Abstract

The influence of Cr additions on the positive temperature dependence of the critical resolved shear stress of Fe3Al is investigated. Single crystals of binary Fe-28 at.% Al and ternary Fe-28 at.% Al-6 at.% Cr with different orientations are deformed in uniaxial compression between room temperature and 1273 K. The dislocation arrangement and the dissociation of superdislocations are studied by transmission electron microscopy using the weak-beam technique. The operative slip systems are discussed on the basis of the direct measurements of the antiphase boundary energies and of the activation volume.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McKamey, C.G., Horton, J. A. and Liu, C. T., Scripta Metall. 22, 1679 (1988).Google Scholar
2. McKarney, C. G., Horton, J. A. and Liu, C. T., J. Mater. Res. 4, 1156 (1989).Google Scholar
3. Morris, D. G., Peguiron, D. and Nazmy, M., Phil. Mag. A 71, 441 (1995).Google Scholar
4. Marcinkowski, M. J. and Brown, N., J. Appl. Phys. 33, 537 (1962).Google Scholar
5. Paidar, V., Pope, D. P. and Vitek, V., Acta Metall. 32, 435 (1984).Google Scholar
6. Kubin, L. P., Phil. Mag. 30, 705 (1974).Google Scholar
7. Spätig, P., Bonneville, J. and Martin, J.-L., Mater. Sci. Engng. A167, 73 (1993).Google Scholar
8. Král, F., Schwander, P. and Kostorz, G., Acta Mater., in press.Google Scholar
9. Inden, G. and Pepperhoff, W., Z.Metallk. 81, 770 (1990).Google Scholar
10. Bulycheva, Z. N., Tolochko, M. N., Svezhova, S. I., and Kondrat'ev, V. K., Ukrain. Fiz. Zhur. 14, 1706 (1969).Google Scholar
11. Saada, G. and Veyssière, P., Phys. Stat. Sol. (b) 172, 309 (1992).Google Scholar
12. Leamy, H. J., Gibson, E. D and Kayser, F. X., Acta metall. 15, 1827 (1967).Google Scholar
13. Munroe, P. R. and Baker, I., J. Mater. Sci. 24, 4246 (1989).Google Scholar