Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T05:47:57.218Z Has data issue: false hasContentIssue false

Plastic Relaxation Mechanics in Systems with a Twist-Bonded Layer

Published online by Cambridge University Press:  11 February 2011

Catherine Priester
Affiliation:
IEMN/ISEN, CNRS-UMR 8520, BP 69 F-59625, Villeneuve d'Ascq Cedex, FRANCE.
Geneviève Grenet
Affiliation:
ECL/LEOM, CNRS-UMR 5512, BP 163 F-69131, Ecully, Cedex, FRANCE
Get access

Abstract

With a view to investigating how a thin film twist-bonded to a host substrate can have compliant behavior from a plasticity point of view, the onset and spread of edge dislocations throughout a mesa are studied. The discussion focuses on the energy relaxed by such dislocations in a mesa made from two coherently bonded lattice-mismatched layers twist-bonded onto a host substrate and patterned down to the film/host substrate interface. Our theoretical results show that the confinement of threading dislocations into a thin twist-bonded film is energetically favorable allowing the overgrowth of a mismatched layer exempt of any threading dislocation at least as far as mesas are concerned.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lo, Y.H., Appl. Phys. Lett. 59, 2311(1991)Google Scholar
2. Kästner, G. and Gösele, U., J. Appl. Phys. 88, 4048, (2000).Google Scholar
3. Brown, A.S. and Doolittle, W.A., Appl. Surf. Sci., 166, 392, (2000 ).Google Scholar
4. Bourret, A., Appl. Surf. Sci., 164, 3, (2000).Google Scholar
5. Vanhollebeke, K., Moerman, I., Van Daele, P. and Demeester, P., Progress in Crystal Growth and Characterization of materials 41, 1 (2000).Google Scholar
6. Sridhar, N., Srolovitz, D.J., Suo, Z., Appl. Phys. Lett. 78, 2482 (2001).Google Scholar
7. Yin, H., Huang, R., Hobart, K.D., Suo, Z., Kuan, T.S., Inoki, C.K., Shieh, S.R., Duffy, T.S., Kub, F.J., and Sturm, J.C., J. Appl. Phys. 91, 9716 (2002)Google Scholar
8. Ejeckam, F.E., Lo, Y.H., Subramania, S., Hou, H.Q., and Hammons, B.E., Appl. Phys. Lett. 70, 1685(1997).Google Scholar
9. Ejeckam, F.E., Seaford, M.L., Lo, Y.H., Hou, H.Q., and Hammons, B.E., Appl. Phys. Lett. 71, 776 (1997).Google Scholar
10. Zhu, Z.H., Zhou, R., Ejeckam, F.E., Zhang, Z., Zhang, J., Greenberg, J., Lo, Y.H., Hou, H.Q., and Hammons, B.E., Appl. Phys. Lett. 72, 2598 (1998).Google Scholar
11. Tan, T.Y., and Gösele, U., Appl. Phys. A 64, 631 (1997).Google Scholar
12. Kästner, G., Tan, T.Y., and Gösele, U., Appl. Phys. A 66, 13 (1998).Google Scholar
13. Obayashi, Y. and Shintani, K., J. Appl. Phys 88, 105 (2000); J. Appl. Phys 88, 5623 (2000).Google Scholar
14. Rohart, S., Grenet, G. and Priester, C., Appl. Surf. Sci., 188, 193 (2002)Google Scholar