Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T09:37:14.175Z Has data issue: false hasContentIssue false

Plasmonic Light Trapping in Amorphous Si Solar Cells Using Periodic Ag Nanodisk Structures

Published online by Cambridge University Press:  05 February 2014

Hidenori Mizuno
Affiliation:
Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Hitoshi Sai
Affiliation:
Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Koji Matsubara
Affiliation:
Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Michio Kondo
Affiliation:
Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Get access

Abstract

This paper describes light trapping in superstrate-type amorphous Si solar cells incorporated with Ag nanostructures (nanodisks) fabricated by a transfer-printing approach. The changes in external quantum efficiency (EQE) and current-voltage characteristics were investigated by changing the position and size (thickness) of the Ag nanodisks in the cells fabricated on flat superstrates. It was confirmed that the optimized Ag nanodisk-configuration led to the enhanced EQE (20%) in the 600-800 nm wavelength range, and the enhanced EQE led to the improved overall conversion efficiency (7.5%) compared to the cell without Ag nanodisks (7.2%). However, the integration of the optimized Ag nanodisk-configuration with the cells fabricated on textured superstrates did not result in the enhanced EQE and conversion efficiency, suggesting further optical designs are necessary to exploit both texture- and plasmon-mediated light trapping effects.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Müller, J., Rech, B., Springer, J., and Vanecek, M.: Sol. Energy 77, 917 (2004).CrossRefGoogle Scholar
(a) Atwater, H. A. and Polman, A., Nat. Mater. 9, 205 (2010). (b) D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, Appl. Phys. Lett. 89, 093103 (2006). (c) K. R. Catchpole, and A. Polman, Appl. Phys. Lett. 93, 191113 (2008). (d) S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, Appl. Phys. Lett. 95, 053115 (2009). (e) V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater and A. Polman, Appl. Phys. Lett. 95, 183503 (2009). (f) E. Moulin, P. Luo, B. Pieters, J. Sukmanowski, J. Kirchhoff, W. Reetz, T. Müller, R. Carius, F.-X. Royer, and H. Stiebig, Appl. Phys. Lett. 95, 033505 (2009). (g) Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, Appl. Phys. Lett. 96, 261109 (2010). (h) C. Eminian, F.-J. Haug, O. Cubero, X. Niquille and C. Ballif, Prog. Photovoltaics 19, 260 (2011). (i) V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, Nano Lett., 11, 4239 (2011). (j) X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, Nano Lett., 12, 2187 (2012). (k) H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, Nano Lett., 12, 4070 (2012). (l) H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, Appl. Phys. Lett. 102, 153902 (2013).” CrossRefGoogle Scholar
Mizuno, H., Sai, H., Matsubara, K., and Kondo, M., Tech. Dgst. of PVSEC-23, 2-P-3 (2013).Google Scholar
Mizuno, H., Kaneko, T., Sakata, I., and Matsubara, K., Chem. Commun., 50, 362 (2014).CrossRefGoogle Scholar
(a) Matsumura, H., Maeda, M., and Furukawa, S., Jpn. J. Appl. Phys. 22, 771 (1983). (b) S. Coffa, J. M. Poate, D. C. Jacobsen, W. Frank, and W. Gustin, Phys. Rev. B, 45, 8355 (1992). CrossRefGoogle Scholar
(a) Pillai, S., Beck, F. J., Catchpole, K. R., Ouyang, Z., and Green, M. A.: J. Appl. Phys. 109, 073105 (2011). (b) H. Mizuno, H. Sai, K. Matsubara, and M. Kondo, Jpn. J. Appl. Phys. 51, 042302 (2012). (c) F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, Appl. Phys. Lett. 96, 033113 (2010). CrossRefGoogle Scholar
Jin, R., Cao, Y. C., Hao, E., Métraux, G. S., Schatz, G. C., and Mirkin, C. A., Nature, 425, 487, (2003).CrossRefGoogle Scholar
Villesen, T. F., Uhrenfeldt, C., Johansen, B., Hansen, J. L., Ulriksen, H. U., and Larsen, A. N., Nanotechnology, 23, 085202 (2012).CrossRefGoogle Scholar