Skip to main content Accessibility help
×
Home

Plasmon-Enhanced Emission Rates from III-Nitride Quantum Wells Using Tunable Surface Plasmons

  • J. Henson (a1), J. DiMaria (a1), E. Dimakis (a1), R. Li (a1), S. Minissale (a1), L. Dal Negro (a1), T. D. Moustakas (a1) and R. Paiella (a1)...

Abstract

Two-dimensional arrays of silver nanocylinders fabricated by electron-beam lithography are used to demonstrate plasmon-enhanced near-green light emission from nitride semiconductor quantum wells. Large enhancements in peak photoluminescence intensity (up to a factor of over 3) are obtained, accompanied by a substantial reduction in recombination lifetime indicative of increased internal quantum efficiency. The measured enhancement factors exhibit a strong dependence on the nanoparticle dimensions, underscoring the importance of geometrical tuning for this application.

Copyright

References

Hide All
1. Okamoto, K., Niki, I., Shvartser, A., Narukawa, Y., Mukai, T., and Scherer, A., Nature Mater. 3, 601605 (2004).
2. Lu, Y. C., Chen, C. Y., Yeh, D. M., Huang, C. F., Tang, T. Y., Huang, J. J., and Yang, C. C., Appl. Phys. Lett. 90, 193103 (2007).
3. Kwon, M. K., Kim, J. Y., Kim, B. H., Park, I. K., Cho, C. Y., Byeon, C. C., and Park, S. J., Adv. Mater. 20, 12531257 (2008).
4. Henson, J., Heckel, J. C., Dimakis, E., Abell, J., Bhattacharyya, A., Chumanov, G., Moustakas, T. D., and Paiella, R., Appl. Phys. Lett. 95, 151109 (2009).
5. Sun, G., Khurgin, J. B., and Soref, R. A., Appl. Phys. Lett. 94, 101103 (2009).
6. Barnes, W. L., J. Mod. Opt. 45, 661699 (1998).
7. Lamprecht, B., Schider, G., Lechner, R. T., Ditlbacher, H., Krenn, J. R., Leitner, A., and Aussenegg, F. R., Phys. Rev. Lett. 84, 47214724 (2000).
8. Haynes, C. L., McFarland, A. D., Zhao, L. L., Van Duyne, R. P., Schatz, G. C., Gunnarsson, L., Prikulis, J., Kasemo, B., and Käll, M., J. Phys. Chem. B 107, 73377342 (2003).
9. Biteen, J. S., Sweatlock, L. A., Mertens, H., Lewis, N. S., Polman, A., and Atwater, H. A., J. Phys. Chem. C 111, 1337213377 (2007).
10. Henson, J., DiMaria, J., and Paiella, R., J. Appl. Phys. 106, 093111 (2009).
11. Henson, J., Dimakis, E., DiMaria, J., Li, R., Minissale, S., Dal Negro, L., Moustakas, T. D., and Paiella, R., Optics Express 18, 2132221329 (2010).
12. Choi, C. K., Kwon, Y. H., Little, B. D., Gainer, G. H., Song, J. J., Chang, Y. C., Keller, S., Mishra, U. K., and DenBaars, S. P., Phys. Rev. B 64, 245339 (2001).
13. Biteen, J. S., Sweatlock, L. A., Mertens, H., Lewis, N. S., Polman, A., and Atwater, H. A., J. Phys. Chem. C 111, 1337213377 (2007).
14. Kawakami, Y., Omae, K., Kaneta, A., Okamoto, K., Izumi, T., Saijou, S., Inoue, K., Narukawa, Y., Mukai, T., and Fujita, S., Phys. Status Solidi A 183, 4150 (2001).
15. Maier, S. A., Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 5.

Keywords

Plasmon-Enhanced Emission Rates from III-Nitride Quantum Wells Using Tunable Surface Plasmons

  • J. Henson (a1), J. DiMaria (a1), E. Dimakis (a1), R. Li (a1), S. Minissale (a1), L. Dal Negro (a1), T. D. Moustakas (a1) and R. Paiella (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed