Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T19:53:03.025Z Has data issue: false hasContentIssue false

Plasma Synthesis of Rare Earth Doped Integrated Optical Waveguides

Published online by Cambridge University Press:  21 February 2011

S. Raoux
Affiliation:
Lawrence Berkeley Laboratory, MS 53, Berkeley CA 94720 On leave from DGA/DRET, 4 Rue de la porte-d'Issy, F75015 PARIS.
S. Anders
Affiliation:
Lawrence Berkeley Laboratory, MS 53, Berkeley CA 94720
K. M. Yu
Affiliation:
Lawrence Berkeley Laboratory, MS 53, Berkeley CA 94720
I. C. Ivanov
Affiliation:
Charles Evans & Associates, 301 Chesapeake Drive, Redwood City, CA 94063.
I. G. Brown
Affiliation:
Lawrence Berkeley Laboratory, MS 53, Berkeley CA 94720
Get access

Abstract

We describe a novel means for the production of optically active planar waveguides. The technique makes use of a low energy plasma deposition. Cathodic-arc-produced metal plasmas are used for the metallic components of the films and gases are added to form compound films. Here we discuss the synthesis of A12-xErxO3 thin films. The erbium concentration (x) can vary from 0 to 100% and the thickness of the film can be from Angstroms to microns. In such material, at high active center concentration (x=l% to 20%), erbium ions give rise to room temperature 1.53μm emission which has minimum loss in silica-based optical fibers. With this technique, multilayer integrated planar waveguide structures can be grown, such as Al2O3/Al2-xErO3/A12O3/Si, for example.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Integrated optics: devices and applications, edited by Boyd, J.T.. (IEEE, New York, NY, 1990)Google Scholar
2. Optoelectronic Integrated Circuit Materials, Physics and Devices. Razeghi, M., Witt, G. L., SPIE Proc., vol 2397, Photonics west, San Jose, Feb. 410, (1995).Google Scholar
3. Federighi, M., Massarek, I., Trwoga, P. F., Electr. lett., Vol.30 No 11, 1277–82, (1994).Google Scholar
4. Oguma, M., Kitagawa, T., Hattori, K., M. Horiguchi. IEEE Phot. Tech. Lett., Vol 6, No 5, 1041 (1994).Google Scholar
5. Lumholt, O., Rasmussen, T., Bjarklev, A.. Electr. Lett. Vol 29, No 5, 495, (1993).Google Scholar
6. Hattori, K., Kitagawa, T., Oguma, M., Ohmori, Y., Horigushi, M.. Electr. Lett. Vol 30, No 11, 856 (1994)10.1049/el:19940596Google Scholar
7. Van den Hoven, G. N., Snoeks, E., Polman, A., van Uffelen, J. W. M., Oei, Y. S., Smit, M. K., Apll. Phys. Lett. 62, 24, 3065, (1993).Google Scholar
8. Lallier, E., Pocholle, J. P., Papuchon, M., He, Q., De Micheli, M., Ostrowsky, D. B., Grezes-Breset, C., Pelletier, E., Electr. Lett., Vol 28, No 15,1428, (1992).Google Scholar
9. Lui, M., MacFarlane, R. A., Yap, D. and Lederman, D., Electr. Lett. 29, 2, 172, (1993).10.1049/el:19930116Google Scholar
10. Marcuse, D., Theory of dielectric optical waveguides, Acad. Press, (1974)Google Scholar
11. Emmons, R. M., KLtrdi, B. N., Hall, D. G., IEEE J. Quant. Elect. 28, 1, (1992).Google Scholar
12. Barrière, A.S., Raoux, S., Garcia, A., L'Haridon, H., Moutonnet, D. and Lambert, B., J. Appl. Phys. 75, 2, 1133, (1994).10.1063/1.356497Google Scholar
13. Rare Earth doped semiconductors. edited by Pomrenke, G. S., Klein, P. B. and Langer, D. W.. (Mater. Res. Soc. Proc., Vol.301, 1993).Google Scholar
14. Godechot, X., Salmeron, M. B., Ogletree, D. F., Galvin, J. E., Galvin, R. A., MacGill, R. A., Dickinson, M. R., Yu, K. M. and Brown, I. G., Mat. Res. Soc. Symp. Proc. Vol.190, 95, (1991).Google Scholar
15. Anders, A., Anders, S., Brown, I. G., Dickinson, M. R. and Macgill, R. A., J. Vac. Sci. Technol. B, 12, 2, 815, (1994).Google Scholar
16. Anders, S., Anders, A., Rubin, M., Wang, Z., Raoux, S., Kong, F. and Brown, I. G., ICMCTF-95, San Diego, April 2428, (1995).Google Scholar
17. Brown, I. G., Dickinson, M. R., Galvin, J. E., Godechot, X. and MacGill, R. A., Nucl. Inst. Meth. Phys. Res. B, 55, 506, (1991).Google Scholar
18. Aksenov, I. I., Belous, V. A., Padalka, V. G., Khoroshikh, V. M., Sov. J. Plasma Phys. 4, 425, (1978).Google Scholar
19. Anders, A., Anders, S., and Brown, I. G., J. Appl. Phys. 75, 10, 4900, (1994).Google Scholar
20. Anders, S., Anders, A., and Brown, I. G., J. Appl. Phys. 75, 10, 4895, (1994)Google Scholar
21. Pasquale, F. Di, Zoboli, M., Federighi, M., Massareck, I., IEEE J. Quant. El. 30, 5, 1277, (1994).Google Scholar
22. Lupei, A., Lupei, V., Georgescu, S., Ursu, I., Zhekov, V. I., Murina, T. M., Prokhorov, A. M., Phys. Rev. B. 41, 16, (1990).Google Scholar