Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T04:34:15.072Z Has data issue: false hasContentIssue false

Plasma Enhanced Chemical Vapor Deposition of Zirconium Nitride Thin Films

Published online by Cambridge University Press:  10 February 2011

Lauren M. Atagi
Affiliation:
Los Alamos National Laboratory, MST-7, Los Alamos, NM 87545
John A. Samuels
Affiliation:
Los Alamos National Laboratory, MST-7, Los Alamos, NM 87545
David C. Smith
Affiliation:
Los Alamos National Laboratory, MST-7, Los Alamos, NM 87545
David M. Hoffman
Affiliation:
Department of Chemistry, University of Houston, Houston, TX 77204
Get access

Abstract

Depositions of high quality zirconium nitride, (Zr3N4), films using the metal-organic precursor Zr(Net2)4 were carried out in a microwave argon/ammonia plasma (2.45 GHz). The films were deposited on crystalline silicon wafers and quartz substrates at temperatures of 200–400 °C. The transparent yellow films have resistivity values greater than MΩ cm. The stoichiometry is N/Zr = 1.3, with less than 5 atom % carbon and little of no oxygen. The hydrogen content is less than 9 atom %, and it does not vary with deposition temperature. The growth rates range from 600 to 1200 Å/min, depending on the flow rates and precursor bubbler temperature. X-ray diffraction studies show a Zr3N4 film deposited at 400 °C is polycrystalline with some (220) orientation. The crystallite size is approximately 30 Å. The band gap, as estimated from transmission spectra, is 3.1 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Toth, L.E. in Refractory Materials, edited by Margrave, J.L., (Academic Press: New York, 1971).Google Scholar
2. Solnyshko, L.N., Chistyi, I.L., Drobot, A.D., Yampol'skii, V.I., and Egorov, V.N., Sov. J. Opt. Technol. (Engl. Transl.) 48, 562 (1981).Google Scholar
3. Yee, D.S., Cuomo, J.J., Frisch, M.A., and Smith, D.P.E., J. Vac. Sci. Technol. A 4, 381 (1986).Google Scholar
4. Salmenoja, K., Korhonene, A.S., Erola, E., and Molarius, J.M., Appl. Phys. Lett. 49, 505 (1986)Google Scholar
5. Johansson, B.O., Hentzell, H.T.G., Harper, J.M.E., and Cuomo, J.J., J. Mater. Res. 1, 442 (1986).Google Scholar
6. Ristolainen, E.O., Molarius, J.M., Korhonen, A.S., and Lindroos, V.K., J. Vac. Sci. Technol. A 5, 2184 (1987).Google Scholar
7. Netterfield, R.P., Martin, P.J., and McKenzie, D.R., J. Mater. Sci. Lett. 9, 972 (1990).Google Scholar
8. Prieto, P., Galan, L, and Sanz, J.M., Phys. Rev. B 47, 1613 (1993).Google Scholar
9. Fix, R., Gordon, R.G., and Hoffman, D.M., Chem. Mater. 3, 1138 (1991).Google Scholar
10. Bradley, D.C. and Thomas, I.M., J. Chem. Soc. 3857 (1960)Google Scholar
11. Index Card No. 35–753. McClune, W.F., Ed. Powder Diffraction File, JCPDS International Center for Diffraction Data, Swathmore, PA.Google Scholar
12. Oh, U.C., and Je, J.H., J. Appl. Phys. 74, 1692 (1993).Google Scholar
13. Yajima, A., Segawa, Y., Matsuzake, R., and Saeki, Y., Bull. Chem. Soc. Jpn. 56, 2638 (1983)Google Scholar
14. Juza, R., Rabenau, H., and Nitschke, I., Z Anorg. Allg. Chem. 332, 1 (1964).Google Scholar
15. Juza, R., Gabel, A., rabenau, H, and Klose, W., Z. Anorg. Allg. Chem. 329, 136 (1964)Google Scholar
16. Wendel, H. and Suhr, H., Appl. Phys. A 54, 389 (1992).Google Scholar
17. Chiu, H.-T. and Huang, C. -C., Mater. Lett. 16, 194 (1993).Google Scholar
18. Sugiyama, K, Pac, S., Takahashi, Y., and Motojima, S., J. Electrochem. Soc. 122, 1545 (1975).Google Scholar