Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T02:58:09.557Z Has data issue: false hasContentIssue false

Plasma Enhanced Atomic Layer Deposition of ZrO2 Gate Dielectric

Published online by Cambridge University Press:  01 February 2011

Jaehyoung Koo
Affiliation:
Division of Materials Science and Engineering, Hanyang Univ. Seoul 133-791, Korea
Jiwoong Han
Affiliation:
Division of Materials Science and Engineering, Hanyang Univ. Seoul 133-791, Korea
Sungwoo Choi
Affiliation:
Division of Materials Science and Engineering, Hanyang Univ. Seoul 133-791, Korea
Chan Gyung Park
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
Yangdo Kim
Affiliation:
Division of Materials Science and Engineering, Hanyang Univ. Seoul 133-791, Korea
Hyeongtag Jeon
Affiliation:
Division of Materials Science and Engineering, Hanyang Univ. Seoul 133-791, Korea
Get access

Abstract

Zirconium oxide (ZrO2) films were investigated as a potential replacement for silicon dioxide gate dielectric. ZrO2 films were deposited by both atomic layer deposition (ALD) and plasma enhanced ALD (PEALD) techniques using Zr t-butoxide and Zr(NEt2)4 as Zr precursors and oxygen as reactant gas. The XTEM images showed a randomly oriented polycrystalline structure of ZrO2 and amorphous characteristics of the interfacial layer. The calculated dielectric constant value of the ZrO2 films are about 10∼18 and these low values are believed due to the low dielectric constant interface layer. ZrO2 films deposited with oxygen plasma using Zr(NEt2)4 showed the leakage current of 3.12X10-9 A/cm2 at the gate bias voltage of -1.0 Volt with the equivalent oxide thickness value of 1.39 nm. ZrO2 films deposited with the oxygen plasma showed generally improved film quality with relatively low leakage current, small hysteresis and low carbon incorporation as well as the higher growth rate compared to the films deposited with the oxygen gas. Also, ZrO2 films deposited using Zr(NEt2)4 showed relatively improved film properties compared to the films deposited using Zr t-butoxide. This study demonstrated the possible application of PEALD technique for the high quality ZrO2 gate dielectric film deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Watanabe, H., Appl. Phys. Lett., 78, 3803 (2001).Google Scholar
2) Jeon, T. S., White, J. M. and Kwong, D. L., Appl. Phys. Lett., 78, 368 (2001).Google Scholar
3) Hubbard, K. J. and Schlom, D. G., J. Mater. Res. 11, 2757 (1996).Google Scholar
4) Ngai, T., Qi, W. J., Sharma, R., Fretwell, J., Chen, X., Lee, J. C. and Banerjee, S., Appl. Phys. Lett., 76, 502 (2000).Google Scholar
5) Chang, J. P. and Lin, Y. S., J. Appl. Phys., 90, 2964 (2001).Google Scholar
6) Ma, Y., Ono, Y., Stecker, L., Evans, D. R. and Hsu, S. T., IEDM 149 (1999).Google Scholar
7) Qi, W. J., Nieh, R., Lee, B. H., Kang, L., Jeon, Y. and Lee, J. C., Appl. Phys. Lett., 77, 3269 (2000).Google Scholar
8) Jeon, S., Choi, C., Seong, T. and Hwang, H., Appl. Phys. Lett., 79, 245 (2001).Google Scholar
9) Qi, W. J., Nieh, R., Lee, B. H., Onishi, K., Kang, L., Jeon, Y., Lee, J. C., Kaushik, V., Nguyen, B. Y., Prabhu, L., Eisenbeiser, K. and Finder, J., Tech. Dig. Of VLSI Symp., 41 (2000).Google Scholar
10) Copel, M., Gribelyuk, M. and Gusev, E., Appl. Phys. Lett., 76, 436 (2000)Google Scholar
11) Uhm, J. W., Lee, S. S., Lee, J. W., Cha, T. H., Yi, K. S., Kim, Y. D. and Jeon, H., Korean, J. Phys. Soc., 35, 765 (1999).Google Scholar
12) Koo, J., Kim, Y. and Jeon, H., Jap. J. Appl. Phys., 41, 5A (2002).Google Scholar