Skip to main content Accessibility help
×
Home

Piezoelectric Multimaterial Fibers

  • Noémie Chocat (a1), Zheng Wang (a2) (a3), Shunji Egusa (a2), Zachary M. Ruff (a1), Alexander M. Stolyarov (a4), Dana Shemuly (a1), Fabien Sorin (a1) (a2), Peter T. Rakich (a2), John D. Joannopoulos (a2) (a3) and Yoel Fink (a1) (a2)...

Abstract

Here we report on the design, fabrication, and characterization of fiber containing an internal crystalline non-centrosymmetric phase enabling piezoelectric functionality over extended fiber lengths [1]. A ferroelectric polymer layer of 30 μm thickness is spatially confined and electrically contacted by internal viscous electrodes and encapsulated in an insulating polymer cladding hundreds of microns in diameter. The structure is thermally drawn in its entirety from a macroscopic preform, yielding tens of meters of piezoelectric fiber. Electric fields in excess of 50V/μm are applied through the internal electrodes to the ferroelectric layer leading to effective poling of the structure. To unequivocally establish that the internal copolymer layer is macroscopically poled we adopt a two-step approach. First, we show that the internal piezoelectric modulation indeed translates to a motion of the fiber’s surface using a heterodyne optical vibrometer at kHz frequencies. Second, we proceed to an acoustic wave measurement at MHz frequencies: a water-immersion ultrasonic transducer is coupled to a fiber sample across a water tank, and frequency-domain characterizations are carried out using the fiber successively as an acoustic sensor and actuator. These measurements establish the broadband piezoelectric response and acoustic transduction capability of the fiber. The potential to modulate sophisticated optical devices is illustrated by constructing a single-fiber electricallydriven device containing a high-quality-factor Fabry-Perot optical resonator and a piezoelectric transducer.

Copyright

References

Hide All
1. Egusa, S., Wang, Z., Chocat, N., Ruff, Z.M., Stolyarov, A.M., Shemuly, D., Sorin, F., Rakich, P.T., Joannopoulos, J.D., & Fink, Y., Nature Materials 9 (8), 643-648 (2010).
2. Abouraddy, A.F., Bayindir, M., Benoit, G., Hart, S.D., Kuriki, K., Orf, N., Shapira, O., Sorin, F., Temelkuran, B., & Fink, Y., Nature Materials 6 (5), 336-347 (2007).
3. Larsen, T.T., Bjarklev, A., Hermann, D.S., & Broeng, J., Optics Express 11 (20), 2589-2596 (2003).
4. Benoit, G., Kuriki, K., Viens, J.F., Joannopoulos, J.D., & Fink, Y., Optics Letters 30 (13), 1620-1622 (2005).
5. Kerbage, C., Hale, A., Yablon, A., Windeler, R.S., & Eggleton, B.J., Applied Physics Letters 79 (19), 3191-3193 (2001).
6. Bergot, M.V., Farries, M.C., Fermann, M.E., Li, L., Poyntzwright, L.J., Russell, P.S.J., & Smithson, A., Optics Letters 13 (7), 592-594 (1988).
7. Townsend, P.D., Poustie, A.J., Hardman, P.J., & Blow, K.J., Optics Letters 21 (5), 333-335 (1996).
8. Fokine, M., Nilsson, L.E., Claesson, A., Berlemont, D., Kjellberg, L., Krummenacher, L., & Margulis, W., Optics Letters 27 (18), 1643-1645 (2002).
9. Carpi, F., & De Rossi, D., Ieee Transactions on Information Technology in Biomedicine 9 (3), 295-318 (2005).
10. Matsushige, K., Nagata, K., Imada, S., & Takemura, T., Polymer 21 (12), 1391-1397 (1980).
11. Yagi, T., Tatemoto, M., & Sako, J., Polymer Journal 12 (4), 209-223 (1980).

Keywords

Piezoelectric Multimaterial Fibers

  • Noémie Chocat (a1), Zheng Wang (a2) (a3), Shunji Egusa (a2), Zachary M. Ruff (a1), Alexander M. Stolyarov (a4), Dana Shemuly (a1), Fabien Sorin (a1) (a2), Peter T. Rakich (a2), John D. Joannopoulos (a2) (a3) and Yoel Fink (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed