Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T13:32:22.187Z Has data issue: false hasContentIssue false

Physics and Electrochemistry of Oxide Growth

Published online by Cambridge University Press:  10 February 2011

Elzbieta Sikora
Affiliation:
Center for Advanced Materials, 517 Deike Building, Penn State University, University Park, PA 16802, esikora@cam.psu.edu, ddm@oas.psu.edu.
Digby D. Macdonald
Affiliation:
Center for Advanced Materials, 517 Deike Building, Penn State University, University Park, PA 16802, esikora@cam.psu.edu, ddm@oas.psu.edu.
Get access

Abstract

The growth of the passive film on tungsten in phosphate buffer solution has been described in terms of the Point Defect Model (PDM). The steady-state current and passive film thickness have been measured as a function of voltage, with the film thickness being obtained from an analysis of capacitance and reflectance data. The observed data cannot be accounted for by the High Field Model (HFM) in its classical form, but can be understood in terms of the PDM. Diagnostic criteria that have been derived from the PDM were used to identify the majority charge carriers in the passive film. The Point Defect Model was employed, together with Mott- Schottky analysis to explore the crystallographic defect structures of the passive films, whereas their electronic structures have been studied using photoelectrochemical impedance spectroscopy (PEIS). The experimental results demonstrate that these structures are strongly coupled with the vacancies acting as the dopants.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. “Passivity of Metals”;, Kruger, J. and Frankenthal, R.P, Editors, The Electrochemical Society Corrosion Monograph Series, Princeton, NJ (1978).Google Scholar
2. Young, L., ” Anodic Oxide Films”, Academic Press, Inc., NewYork (1961).Google Scholar
3. Fromhold, A.T. Jr., “Theory of Metal Oxidation, Vol.I, Fundamentals“;, North Holland, Amsterdam (1976).Google Scholar
4. ”Passivity of Metals and Semiconductors“;, Froment, M., Editor, Elsevier Scientific Pub. Co., Amsterdam (1983).Google Scholar
5. Verwey, E.J.W., Physica, 2, 1059 (1935).Google Scholar
6. Vetter, K.J., Electrochim. Acta, 16, 1923 (1971).Google Scholar
7. Kirchheim, R., Electrochim. Acta, 32, 1619 (1987).Google Scholar
8. Macdonald, D.D. and Urquidi-Macdonald, M., J. Electrochem. Soc. 137, 2395 (1990).Google Scholar
9. Macdonald, D.D., Biaggio, S.R., and Song, H., J Electrochem. Soc. 139, 170 (1992).Google Scholar
10. Macdonald, D.D., J. Electrochem. Soc. 139, 3434 (1992).Google Scholar
11. Sikora, E., Sikora, J., and Macdonald, D.D., Electrochim. Acta, in press, (1996).Google Scholar
12. McAleer, J.F. and Peter, L.M., Faraday Discuss., 70, 67 (1980).Google Scholar
13. Sikora, E., unpublished data.Google Scholar
14. Sikora, E., Macdonald, D.D., and Sikora, J., Proc. 7th International Symposium on Oxide Films on Metals and Alloys, Hebert, K.R., Thompson, G.E. (ed), vol 94#25, PP 139151, Electrochem. Soc. Inc, (1994).Google Scholar
15. Mott, N.F., Trans. Faraday Soc., 43, 429 (1947).Google Scholar
16. Cabrera, N. and Mott, N.F., Rep. Prog. Phys., 12, 163 (1948).Google Scholar
17. Sikora, E., Macdonald, D.D., and Sikora, J., to be published.Google Scholar
18. Quarto, F. Di, Paola, A. Di, and Sunseri, C., J Electrochem. Soc., 127, 1016 (1980).Google Scholar
19. Vilche, J.R., Juttner, K., Lorenz, W.J., Kautek, W., Paatsch, W., Dean, M.H., and Stimming, U., J. Electrochem. Soc, 136, 3773 (1989).Google Scholar
20. Gerischer, H., Electrochim. Acta, 35, 1677 (1990).Google Scholar
21. Quarto, F. Di, Paola, A. Di and Sunseri, C., Electrochim. Acta, 26, 1177 (1981).Google Scholar
22. Paola, A. Di, Electrochim. Acta, 34, 203 (1989).Google Scholar
23. Schultze, J.W., in Frankenthal, R.P. and Kruger, J. (Eds.) Passivity of Metals, The Electrochemical Society, Pennington, NJ, 1978.Google Scholar
24. Schmuki, P. and Bohni, H., J. Electrochem. Soc., 139, 1908 (1992).Google Scholar
25. Stimming, U., Electrochim. Acta, 31, 415 (1986).Google Scholar
26. Morrison, S.R., ”Electrochemistry at Semiconductors and Oxidized Metal Electrodes”, Plenum Press, New York, 1980.Google Scholar
27. Gryse, De, Gomes, W.P., Cardon, F., and Vennik, J., J. Electrochem. Soc., 122, 711 (1975).Google Scholar
28. Schmuki, P., Buchler, M., Virtanen, S., Bohni, H., Muller, R., and Gauckler, L.J., J. Electrochem. Soc., 142, 3336 (1995).Google Scholar
29. Sikora, J., Sikora, E., and Macdonald, D.D., Capacitance Studies of the Passive Film on Tungsten, Ext. Abs. 94-1, 85. 185th Meeting Electrochem. Soc., San Francisco (1994).Google Scholar
30. Goossens, A., Vazquez, M. and Macdonald, D.D., Electrochim. Acta, 41, 35 (1996).Google Scholar
31. Albery, W.J. and Bartlett, P.N., J. Electrochem. Soc., 129, 2254 (1982).Google Scholar
32. Albery, W.J., Bartlett, P.N., and Wilde, C.P., J. Electrochem. Soc., 134, 2486 (1987).Google Scholar
33. Peter, L.M., Li, J., and Peat, R., J. Electroanal. Chem., 165, 29 (1984).Google Scholar
34. Li, J., Peat, R., and Peter, L.M., J. Electroanal. Chem., 165, 41 (1984).Google Scholar
35. Li, J. and Peter, L.M., J. Electroanal. Chem., 193, 27 (1985).Google Scholar
36. Li, J. and Peter, L.M., J. Electroanal. Chem., 199, 1 (1986).Google Scholar
37. Verbrugge, M.W. and Tobias, C.W., J. Electrochem. Soc., 134, 1437 (1987).Google Scholar
38. Rotenberg, Z.A. and Monakhov, B.I., Sov. Electrochem., 24, 332 (1988).Google Scholar
39. Rotenberg, Z.A. and Monakhov, B.I., J. Electroanal. Chem., 316, 165 (1991).Google Scholar
40. Marco, M. Di and Swanson, J.G., J Electrochem. Soc., 139, 262 (1992).Google Scholar
41. Song, H. and Macdonald, D.D., J. Electrochem. Soc., 138, 1408 (1991).Google Scholar
42. Goossens, A. and Macdonald, D.D., J. Electroanal. Chem., 352, 65 (1993).Google Scholar