Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-30T15:36:53.246Z Has data issue: false hasContentIssue false

Physically Self-assembled Au Nanorod Arrays for SERS

Published online by Cambridge University Press:  01 February 2011

Motofumi Suzuki
Affiliation:
m-snki@mbox.kudpc.kyoto-u.ac.jp, Kyoto University, Department of Micro Engineering, Yoshida, Sakyo, Kyoto, 606-8501, Japan, +81-75-753-5196, +81-75-753-5196
Kaoru Nakajima
Affiliation:
Kyoto University, Kyoto, 606-8501, Japan
Kenji Kimura
Affiliation:
Kyoto University, Kyoto, 606-8501, Japan
Takao Fukuoka
Affiliation:
JST Kyoto Pref. CREATE, Seika, Kyoto, 619-0237, Japan
Yasushige Mori
Affiliation:
Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
Get access

Abstract

We have demonstrated surface-enhanced Raman spectroscopy on arrays of Au nanorods aligned in line by a dynamic oblique deposition technique. For the light polarized along the major axis of the nanorods, the plasma resonance of the Au nanorods has been tuned to a wavelength suitable for Raman spectroscopy. The Raman scattering on the discrete nanorods is enhanced significantly compared with that on semi continuous Au films. Since the preparation process is physically bottom-up, it is robust in its selection of the materials and is useful in providing the SERS sensors at low cost.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haynes, C. L., Yonzon, C. R., Zhang, X. Y., and Van Duyne, R. P., J. Raman Spectrosc. 36, 471 (2005).Google Scholar
2. Chance, B., Annals of the New York Academy of Sciences 838, 29 (1998).Google Scholar
3. Krug, J. T. II, , S. E. J., and Xiea, X. S., J. Chem. Phys. 16, 10895 (2002).Google Scholar
4. Liao, P. F., Bergman, J. G., Chemla, D. S., Wokaun, A., Melngailis, J., Hawryluk, A. M., and Economou, N. P., Chem. Phys. Lett. 82, 355 (1981).Google Scholar
5. Martínes, J. L., Gao, Y., López-Ríos, T., and Wirgin, A., Phys. Rev. B 35, 9481 (1987).Google Scholar
6. Wachter, E. A., Moore, A. K., and Haas, J. W., Vibrational Spectroscopy 3, 73 (1992).Google Scholar
7. Nikoobakht, B., Wang, J., and El-Sayed, M. A., Chem. Phys. Lett. 366, 17 (2002).Google Scholar
8. Inoue, M., and Ohtaka, K., J. Phys. Soc. Jpn. 52, 3853 (1983).Google Scholar
9. Suzuki, M., Maekita, W., Kishimoto, K., Teramura, S., Nakajima, K., Kimura, K., and Taga, Y., Jpn. J. Appl. Phys. Part 2 44, L193 (2005).Google Scholar
10. Suzuki, M., Maekita, W., Wada, Y., Nakajima, K., Kimura, K., Fukuoka, T., and Mori, Y., Appl. Phys. Lett. 88, 203121 (2006).Google Scholar
11. Suzuki, M., Wada, Y., Maekita, W., Nakajima, K., Kimura, K., Fukuoka, T., and Mori, Y., e-J. Surf. Sci. Nanotech. 3, 280 (2005).Google Scholar
12. Lu, T. M., Ye, D. X., Karabacak, T., and Wang, G. C., in Mater. Res. Soc. Symp. Proc. "Kinetics-Driven Nanopatterning on Surfaces", edited by Chason, E., Gilmer, G. H., Huang, H., and Wang, E. (Warrendale, PA, 2005), pp. 13.Google Scholar
13. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., and Feld, M. S., Chem. Rev. 99, 2957 (1999).Google Scholar