Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-16T13:12:49.467Z Has data issue: false hasContentIssue false

Physical and Electrical Properties of Yttrium Silicate Thin Films

Published online by Cambridge University Press:  14 March 2011

James J. Chambers
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695
Gregory N. Parsons
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

This article reports on the physical and electrical properties of yttrium silicate, which is a possible high-k replacement for the SiO2 gate dielectric in CMOS devices. The yttrium silicate (Y-O-Si) films are formed by sputtering yttrium onto clean silicon, annealing in vacuum to form yttrium silicide and then oxidizing in N2O to form the silicate. Shifts in the Y 3d, Si 2p and O 1s photoelectron spectra with respect to Y2O3 and SiO2 indicate that the films are fully oxidized yttrium silicate. FTIR results that reveal a Si-O stretching mode at 950 cm−1 and Y-O stretching modes in the far-IR are consistent with XPS. XPS and FTIR results are in accordance with the donation of electron density from the yttrium to the Si-O bond in the silicate. The yttrium silicate films contain a fixed charge density of ∼9×1010 cm−2 negative charges as calculated from measured C-V behavior. The properties of ultra-thin yttrium silicate films with an equivalent silicon dioxide thickness (electrical) of ∼1.0 nm will be discussed elsewhere.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Barin, I., Thermochemical Data of Pure Substances (VCH Verlagsgesellschaft, Weinheim, Germany, 1989).Google Scholar
2 Gurvitch, M., Manchanda, L., and Gibson, J. M., Appl. Phys. Lett. 51, 919921 (1987).Google Scholar
3 Batalieva, N. G. and Pyatenko, Y. A., Zhurnal Strukturnoi Khimii 8, 548549 (1967).Google Scholar
4 Maksimov, B. A., Ilyukhin, V. V., Kharitonov, Y. A., and Belov, N. V., Kristallografiya 15, 926933 (1970).Google Scholar
5 Webster, J. D., Westwood, M. E., Hayes, F. H., Day, R. J., Taylor, R., Duran, A., Aparicio, M., Rebstock, K., and Vogel, W. D., J. European Ceram. Soc. 18, 23452350 (1998).Google Scholar
6 Murarka, S. P. and Chang, C. C., App. Phys. Lett. 37, 639641 (1980).Google Scholar
7 Dheurle, F. M., Thin Sol. Films 105, 285292 (1983).Google Scholar
8 Murarka, S. P., J. Vac. Sci. Technol. 17, 775, (1980).Google Scholar
9 Alekseev, O. G., Krivosheev, N. V., Khodos, M. Y., Galakhov, V. R., Shumilov, V. V., Cherkashenko, V. M., Kurmaev, E. Z., and Gubanov, V. A., Inorg. Mater. 22, 17481751 (1986).Google Scholar
10 Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D., Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prairie, MN, 1992).Google Scholar
11 Nigara, Y., Ishigame, M., and Sakurai, T., J. Phys. Soc. Japan 30, 453, (1971).Google Scholar
12 Lee, Y. K., Fujimura, N., and Ito, T., J. Alloys Compd. 193, 289291 (1993).Google Scholar