Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T12:05:25.176Z Has data issue: false hasContentIssue false

PHREEQC Modelling of Leaching of Major Elements and Heavy Metals From Cementitious Waste Forms

Published online by Cambridge University Press:  01 February 2011

Evelien Martens
Affiliation:
Belgian Nuclear Research Centre (SCK•CEN), Institute for Environment, Health and Safety, Boeretang 200, B-2400 Mol, Belgium
Diederik Jacques
Affiliation:
Belgian Nuclear Research Centre (SCK•CEN), Institute for Environment, Health and Safety, Boeretang 200, B-2400 Mol, Belgium
Tom Van Gerven
Affiliation:
Katholieke Universiteit Leuven, Faculty of Engineering, Department Of Chemical Engineering, de Croylaan 46, B-3001 Leuven, Belgium
Lian Wang
Affiliation:
Belgian Nuclear Research Centre (SCK•CEN), Institute for Environment, Health and Safety, Boeretang 200, B-2400 Mol, Belgium
Dirk Mallants
Affiliation:
Belgian Nuclear Research Centre (SCK•CEN), Institute for Environment, Health and Safety, Boeretang 200, B-2400 Mol, Belgium
Get access

Abstract

In this study, Ca, Mg, Al, and Pb concentrations leached from uncarbonated and carbonated ordinary Portland cement – dried waste incinerator bottom ash samples during single extraction tests (EN12457 test) at a pH from 1 to 12, were modelled using the geochemical code PHREEQC. A good agreement was found between modelling results and experiments in terms of leached concentrations for Ca, Mg, and Al by defining a single set of pure mineralogical phases for both the uncarbonated and carbonated (three levels) samples. The model also predicted well the observed decrease in Ca leaching with increasing carbonation. Modelling results further revealed that leaching of Pb is not controlled by dissolution/precipitation of pure Pb containing minerals only (carbonates and (hydr)oxides). The addition of solid solutions (calcite-cerrusite and gibbsite-ferrihydrite-litharge solid solutions) and adsorption reactions on amorphous Fe- and Al-oxides improved the model representation of the experimentally observed amphoteric leaching profile of Pb from the cementitious material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 IAWG, , Studies in Environmental Science 67 (1997).Google Scholar
2 Kosson, D.S., Sloot, H.A. van der, Sanchez, F., Garrabrants, A.C., Environ. Eng. Sci. 19 (3), 159 (2002).Google Scholar
3 Gerven, T. Van, PhD. Thesis, University of Leuven, 2005 Google Scholar
4 Ferdelman, T.G., Master thesis, University of Delaware, 1988.Google Scholar
5 Kostka, J.E., and Luther, G.W., Geochim. Cosmochim. Acta 58, 1701 (1994).Google Scholar
6 Cornelis, G., Gerven, T. Van, and Vandecasteele, C., J. Hazard. Mater. A137, 1284 (2006).Google Scholar
7 Jackson, M.L., Lim, C.H., and Zelazny, L.W., in Methods of Soil Analysis Part I - Physical and Mineralogical Methods, Klute, A. (SSSA, 1996) pp.113118.Google Scholar
8 Martens, E., Master thesis, University of Leuven, 2007.Google Scholar
9 Parkhurst, D.L., and Appelo, C.A.J., Report No. WRIR 99-4259, 1999.Google Scholar
10 Vinckx, L., Thesis, Hogeschool Leuven, 2003.Google Scholar
11 Astrup, T., Dijkstra, J.J., Comans, R.N.J., Sloot, H.A. van der, and Christensen, T.H., Environ. Sci. Technol. 40, 3551 (2006).Google Scholar
12 Johnson, C.A., and Kersten, M., Environ. Sci. Technol. 33, 2296 (1999).Google Scholar
13 Meima, J.A., and Comans, R.N.J., Environ. Sci. Technol. 31, 1269 (1997).Google Scholar
14 Garrabrants, A.C., Sanchez, F., and Knosson, D.S., Waste Manag. 24, 19 (2004).Google Scholar
15 Bonen, D., and Sarkar, S.L., J. Hazard. Mat. 40, 321 (1995).Google Scholar
16 Kulik, D.A., and Kersten, M., J. Amer. Cer. Soc. 84, 3017 (2001).Google Scholar
17 Windt, L. De, Pellegrini, D., and Lee, J. van der, J. Cont. Hydrol. 68, 165 (2004).Google Scholar
18 Dijkstra, J.J., Sloot, H.A. van der,and Comans, R.N.J., Appl. Geochem. 21, 335 (2006).Google Scholar
19 Sloot, H.A. van der, Cement and Concrete Research 30, 1079 (2000).Google Scholar
20 Miyamoto, S., Uehara, S., Sasoh, M., Sato, M., Toyohara, M., Idemitsu, K., and Matsumura, S.,J. Nuclear Sc. And Tech. 43, 1370 (2006).Google Scholar
21 Kirby, C.S., and Rimstidt, J.D., Environ. Sci. Technol. 28, 443 (1994).Google Scholar
22 Lothenbach, B., and Winnefeld, F., Cement and Concrete Research 36, 209 (2006).Google Scholar
29 Eighmy, T.T., Eusden, J.D., Krzanowski, J.E., Domingo, D.S., Stämpfli, D., Martin, J.R., and Erickson, P.M., Environ. Sci. Technol. 29, 629 (1995).Google Scholar
30 APolettini, ., and Pomi, R., J. Hazard. Mat. B113, 209 (2004).Google Scholar
31 Chrysochoou, M., and Dermatas, D., J. Hazard. Mat. 136, 20 (2006).Google Scholar
23 Stronach, S.A., and Glasser, F.P., Adv. in Cem. Res. 9, 167 (1997).Google Scholar
24 Bourbon, X., ANDRA Report C.NT.ASCM.03.026.A. (2003).Google Scholar
25 Atkins, M., Macphee, D., Kindness, A., and Glasser, F.P., Cement and Concrete Research 21,991 (1991).Google Scholar
26 Allison, J.D., Brown, D.S., and Novo-Gradac, K.J., MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: version 3.0. User‘s manual (1990).Google Scholar
27 Windt, L. De, and Badreddine, R., Waste Manag. doi:10.1016/j.wasman.2006.07.019. 28. T.J. Wolery, EQ3/6, Technical report UCRL-MA-110662 PT I ed., Lawrence Livermore National Laboratory, Livermore, 1992.Google Scholar
32 Halim, C.E., Short, S.A., Scott, J.A., Amal, R., and Low, G., J. Hazard. Mat. A125, 45 (2005).Google Scholar
33 Jing, C., Meng, X., and Korfiatis, G.P., J. Hazard. Mat. B114, 101 (2004).Google Scholar
34 Johnson, C.A., Kersten, M., Ziegler, F., and Moor, H.C., Waste Manag. 16, 129 (1996).Google Scholar
35 Godelitsas, A., Astilleros, J.M., Hallam, K., Harissopoulos, S., and Putnis, A., Environ. Sci. Technol. 37, 3351 (2003).Google Scholar
36 Rouff, A.A., Elzinga, E.J., Reeder, R.J., and Fisher, N.S., Geochim. Cosmochim. Acta 69, 5173(2005).Google Scholar
37 Dzombak, D.A., and Morel, F.M.M., Surface Complexation Modeling - Hydrous Ferric Oxide(1990).Google Scholar
38 Meima, J.A., and Comans, R.N.J., Environ. Sci. Technol. 32, 688 (1998).Google Scholar
39 Xu, Y., Boonfueng, T., Axe, L., Maeng, S., and Tyson, T., J. Col. Interf. Sci. 299, 28 (2006).Google Scholar
40 Fan, M., Boonfueng, T., Xu, Y., Axe, L., and Tyson, T.A., J. Col. Interf. Sci. 281, 39 (2005).Google Scholar
41 Meima, J.A., and Comans, R.N.J., J. Geochem. Expl. 62, 299 (1998).Google Scholar
42 Sloot, H.A. van der, Zomeren, A. van, Dijkstra, J.J., Meeussen, J.C.L., Comans, R.N.J., and Scharff, H., ECN-RX-05-164 (2005).Google Scholar