Skip to main content Accessibility help
×
Home

Photovoltaic properties of multi walled carbon nanotubes - poly(3-octathiophene) conducting polymer blends structures

  • Punya A. Basnayaka (a1) (a2), Pedro Villalba (a3), Manoj K. Ram (a2) (a4), Lee Stefanakos (a2) (a5) and Ashok Kumar (a1) (a2)...

Abstract

In the present study, we have studied photoelectrochemical properties of poly(3-octathiophene) (P3OT), blending with multi-wall carbon nanotubes (MWCNTs). P3OT blended with MWCNTs was characterized using Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Raman spectroscope, and Cyclic Voltammetry (CV) techniques, respectively. The photoelectrochemical current of the MWCNs-P3OT based cell under illumination was investigated by applying a voltage. The blend consisting of 10% MWCNTs in P3OT gave the promising photocurrent in 0.2 M tetra-butyl-ammonium-tetrafluoroborate (TBATFB), electrolyte. Experimental results indicate that photocurrent obtained from MWCNT-P3OT was three times higher than simple P3OT-based conducting polymer. The electrochemical responses of MWCNT-P3OT films in different electrolytes such as 0.2M TBATFB, 0.2 M LiClO4, 1 M H2SO4 and 0.2 M LiBF6 were investigated for comparative photocurrent properties of the photoelectrochemical cell.

Copyright

Corresponding author

References

Hide All
[1] Goetzbergera, Adolf, Heblinga, Christopher, Schock, Hans-Werner, “Photovoltaic materials, history, status and outlook,” Materials Science and Engineering, vol. 40, pp. 146, 2002.
[2] Peumans, Peter, Uchida, Soichi, Forrest, Stephen R., “Efficient bulk heterojunction photovoltaic cells using smallmolecular- weight organic thin films,” vol. 425, pp. 158–162, 2003.
[3] Wei, Di, Amaratunga, Gehan, “Photoelectrochemical Cell and Its Applications in Optoelectronics,” Int. J. Electrochem. Sci, vol. 2, pp. 897912, 2007.
[4] Chen, Y., Jiang, Z., Gao, M., Watkins, S. E., Lu, P., Wang, H., and Chen, X., “Efficiency enhancement for bulk heterojunction photovoltaic cells via incorporation of alcohol soluble conjugated polymer interlayer,” Applied Physics Letters, vol. 100, no. 20, pp. 203304–203304–5, 2012.
[5] Espinosa, N., Dam, H. F., Tanenbaum, D. M., Andreasen, J. W., Jørgensen, M., and Krebs, F. C., “Roll-to-Roll Processing of Inverted Polymer Solar Cells using Hydrated Vanadium(V)Oxide as a PEDOT: PSS Replacement,” Materials, vol. 4, no. 1, pp. 169182, 2011.
[6] Berson, S., de Bettignies, R., Bailly, S., Guillerez, S., and Jousselme, B., “Elaboration of P3HT/CNT/PCBM Composites for Organic Photovoltaic Cells,” Advanced Functional Materials, vol. 17, no. 16, pp. 33633370, 2007.
[7] Ram, M. K., Gomez, H., Alvi, F., (Lee) Stefanakos, E., Goswami, Y., and Kumar, A., “Novel Nanohybrid Structured Regioregular Polyhexylthiophene Blend Films for Photoelectrochemical Energy Applications,” J. Phys. Chem. C, vol. 115, no. 44, pp. 2198721995, Nov. 2011.
[8] Hukic-Markosian, G., Basel, T., Singh, S., Valy Vardeny, Z., Li, S., and Laird, D., “Study of photoexcitations in poly(3-hexylthiophene) for photovoltaic applications,” Applied Physics Letters, vol. 100, no. 21, pp. 213903–213903–5, May 2012.
[9] Kymakisa, E. and Amaratunga, G. A. J., “Single-wall carbon nanotube/ conjugated polymer photovoltaic devices, ” vol. 80, no. 1, pp. 112–114, 2002.
[10] Sibinski, M., Jakubowska, M., Znajdek, K., Sloma, M., Guzowski, B.Carbon nanotube transparent conductive layers for solar cells applications,” Optica Applicata, pp. 375381, 2011.
[11] Zdrojek, M., Gebicki, W., Jastrzebski, C., Melin, T., Huczko, A., “Studies of multiwall carbon nanotubes using Raman spectroscopy and atomic force microscopy,” Solide State Phenomena, vol. 99, no. 265, 2004.

Keywords

Photovoltaic properties of multi walled carbon nanotubes - poly(3-octathiophene) conducting polymer blends structures

  • Punya A. Basnayaka (a1) (a2), Pedro Villalba (a3), Manoj K. Ram (a2) (a4), Lee Stefanakos (a2) (a5) and Ashok Kumar (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed