Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T10:34:39.227Z Has data issue: false hasContentIssue false

Photothermal Deflection Spectroscopy Investigations of Uranium Electrochemistry - II

Published online by Cambridge University Press:  25 February 2011

James D. Rudnicki
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, California, 94720, USA
Richard E. Russo
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, California, 94720, USA
Get access

Abstract

Photothermal Deflection Spectroscopy (PDS) has been applied to the study of uranium oxide electrochemistry. PDS measures the optical absorption of the sample surface and concentration gradients formed in the electrolyte. Both of these measurements are performed in situ under dynamic conditions. The combination of these two measurements provides information that can be used to infer the mechanism of the UO2 surface chemistry. These studies of the uranium dissolution mechanism are performed in pH 10.5 sodium sulfate electrolytes at 22°C. The electrolytes are free from oxygen, and complexing species. Our results suggest that dissolution of UO2 can occur at oxidizing potentials as low as -300 mV vs. saturated calomel electrode (SCE). The optical absorption and concentration gradient results provide evidence for a substantial surface change that occurs at an oxidation potential of +300 mV. The results show that the surface layer formed by this change dissolves slowly by a non-electrochemical reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Russo, R.E., McLarnon, F.R., Spear, J.D., and Cairns, E.J., J. Electrochem. Soc, 134 (11), 2783 (1987).CrossRefGoogle Scholar
2 Rudnicki, J.D., McLarnon, F.R., and Cairns, E.J., in Techniques for Characterization of Electrodes and Electrochemical Processes, Varma, R. and Selman, J.R., (eds.), John Wiley & Sons, New York, 1991.Google Scholar
3 Rudnicki, J.D., and Russo, R.E., in Materials Research Society Symp., 294, 55 (1992).Google Scholar
4 Haas, O., Rudnicki, J., McLarnon, F.R., and Cairns, E.J., Faraday Transactions, 87 (7), 939 (1991).CrossRefGoogle Scholar
5 Rudnicki, J.D., Ph.D. Thesis, University of California at Berkeley, 1992. (also Lawrence Berkeley Laboratory, Report LBL-32127, March 1992.)Google Scholar
6 Weaver, J.K., McLarnon, F.R., and Cairns, E.J., J. Electrochem. Soc. 138 (9), 2572 (1991).CrossRefGoogle Scholar
7 Rudnicki, J.D., Brisard, G.M., Gasteiger, H., Russo, R.E., McLarnon, F.R., and Cairns, E.J., in print J. Electroanal. Chem. (1993).Google Scholar
8 Barbero, C., Miras, M.C., Haas, O., and Kotz, R., J. Electrochem. Soc., 138 (3), 669 (1991).CrossRefGoogle Scholar
9 Kotz, R., Barbero, C., and Haas, O., J. Electroanal. Chem., 296 (1), 37 (1990).CrossRefGoogle Scholar
10 Haas, O., Faraday Discussions of the Chemical Society, 88, 123 (1989).CrossRefGoogle Scholar
11 Plichon, V., and Rollat, N., International J. Mineral Processing, 28 (1–2), 99 (1990).CrossRefGoogle Scholar
12 Plichon, V., Even, R., and Beiner, G., J. Electroanal. Chem., 305 (2), 195 (1991).CrossRefGoogle Scholar
13 Decker, F., Neuenschwander, R.T. Cesar, C. and Penna, A.F.S., J. Electroanal. Chem., 228, 481 (1987).CrossRefGoogle Scholar
14 Decker, F. and Fracatoro-Decker, M., J. Electroanal. Chem., 243, 187 (1988).CrossRefGoogle Scholar
15 Tamor, M.A. and Zanini, M., J. Electrochem. Soc, 133, 1399 (1986).CrossRefGoogle Scholar
16 Sunder, S., Shoesmith, D.W., Bailey, M.G., Stanchell, F.W., and Mclntyre, N.S., J. Electroanal. Chem, 130, 163(1981).CrossRefGoogle Scholar
17 Nicol, M.J., and Needes, C.R.S., Electrochem. Ada., 20, 585 (1975).Google Scholar
18 Hocking, W.H., Shoesmith, D.W., and Betteridge, J.S., J. NucL Mater., 190, 36 (1992).CrossRefGoogle Scholar
19 Sunder, S., Shoesmith, D.W., Bailey, M.G., and Wallace, G.J., J. Electroanal. Chem., 150, 217 (1983).CrossRefGoogle Scholar
20 Shoesmith, D.W., Sunder, S., Bailey, M.G., and Owen, D.G., in Passivity of Metals and Semiconductors, Proc. 5th Intern. Symp. on Passivity, Bombannes, France, Froment, M. (ed.), Elsevier Science, Amsterdam, 125 (1983).CrossRefGoogle Scholar
21 Shoesmith, D.W., Sunder, S., Bailey, M.G., Wallace, G.J., and Stanchell, F.W., in Applications of Surface Science, 20, 39(1984).CrossRefGoogle Scholar
22 Nicol, M.J., and Needes, C.R.S., Electrochem. Acta., 22, 1381 (1977).CrossRefGoogle Scholar
23 Shoesmith, D.W., and Sunder, S., An Electrochemistry-Based Model for the Dissolution ofUO2, Atomic Energy of Canada Limited, AECL-10488, 1991.Google Scholar
24 Johnson, L.H., and Shoesmith, D.W., in Radioactive Waste Forms for the Future, Lutze, W., and Ewing, R.C., (eds.), Elsevier, 1988.Google Scholar
25 Naegele, J., Manes, L., and Birkholtz, U., in Plutonium and Other Actinides, Blank, H., and binder, R. (eds.), North-Holland Publishing Co., Amsterdam, 1976.Google Scholar
26 Griffiths, T.R., and Hubbard, H.V., J. Nuclear Materials, 185, 243 (1991).CrossRefGoogle Scholar
27 Griffiths, T.R., Hubbard, H.V., Allen, G.C., and Tempest, P.A., J. Nuclear Materials, 151, 307 (1988).CrossRefGoogle Scholar
28 Hubbard, H.V., and Griffiths, T.R., J. Chem Soc, Faraday Trans., 2, 1215 (1987).CrossRefGoogle Scholar
29 Ackermann, R.J., Thorn, R.J., and Winslow, G.H., J. Optical Soc. Amer., 49 (11), 1107 (1959).CrossRefGoogle Scholar
30 Nasu, S., J. Phys. Soc. Japan, 19, 1753 (1964).CrossRefGoogle Scholar
31 Schoenes, J., J. Chem. Soc, Faraday Trans., 83, 1205 (1987).CrossRefGoogle Scholar
32 Schoenes, J., J. Appl. Phys., 49 (3), 1463 (1978).CrossRefGoogle Scholar
33 Murphy, J.C., and Aamodt, L.C., J. Appl. Phys., 51 (9), 4580 (1980).CrossRefGoogle Scholar
34 Mandelis, A., J. Appl. Phys. 54 (6), 3404 (1983).CrossRefGoogle Scholar
35 Olmstead, M.A., Amer, N.M., Kohn, S., Fournier, D., and Boccara, A.C., Appl. Phys. A, 32, 141 (1983).CrossRefGoogle Scholar
36 Heavens, O.S., Optical Properties of Thin Solid Films, Dover, New York, 1955.Google Scholar