Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T06:25:09.269Z Has data issue: false hasContentIssue false

Photoquenching Of Persistent Photoconductivity In N-Type GaN

Published online by Cambridge University Press:  10 February 2011

Michèle T. Hirsch
Affiliation:
Department of Physics, University of Oldenburg, D-26111 Oldenburg, Germany michele.hirsch@uni-oldenburg.de
O. Seiferta
Affiliation:
Department of Physics, University of Oldenburg, D-26111 Oldenburg, Germany
O. Kirfel
Affiliation:
Department of Physics, University of Oldenburg, D-26111 Oldenburg, Germany
J. Parisia
Affiliation:
Department of Physics, University of Oldenburg, D-26111 Oldenburg, Germany
J. A. Wolk
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
W. Walukiewicz
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
E. E. Haller
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Department of Materials Science and Mineral Engineering, University of California, Berkeley, California 94720, USA
O. Ambacher
Affiliation:
Walter Schottky Institute, Technical University Munich, D-85748 Garching, Germany
M. Stutzmann
Affiliation:
Walter Schottky Institute, Technical University Munich, D-85748 Garching, Germany
Get access

Abstract

We report on the observation of optical quenching of persistent photoconductivity (PPC) in unintentionally doped n-type GaN films. The PPC is induced by subbandgap illumination between room temperature and 77K. The corresponding decay, which.is thermally activated, is substantially increased upon low energy illumination, e.g. illumination by wavelengths between 1O50nm and 700nm. We measure the saturation conductivity under simultaneous illumination with excitation and quenching light and find that some wavelengths can induce both excitation and quenching of photoconductivity. Additionally, we present a preliminary investigation of the spectral dependence of the quenching effect. A simulation indicates only a weak spectral dependence of the quenching cross-sections in the wavelength range from 470nm–1050nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] see e.g., Redfield, D. and Bube, R. H. in Photoinduced Defects in Semiconductors, Camebridge, (1996).10.1017/CBO9780511622533Google Scholar
[2] Mooney, P. M. J. Appl. Phys. 67, RI (1990).Chadi, D.J. and Chang, K.J., Phys. Rev. Lett. 61. 873 (1988).10.1063/1.345628Google Scholar
[3] Sheinknlanu, M. K. and Shik, A. Y., Soy. Phys. Seiiicond. 10. 128 (1976).Google Scholar
[4] Queisser, H.-A. and Theodorou, D. E., Phys. Rev. B33. 4027 (1986).10.1103/PhysRevB.33.4027Google Scholar
[5] Johnson, C., Lin, J. Y., Jiang, H. X., Khan, M. A.. and (‘Sun, J.J., Appl. Phys. Lett. 68, 1808 (1996).10.1063/1.116020Google Scholar
[6] Qiu, C. H. and Pankove, .J. I., AppI. Phys. Lett. 70. 1983 (1997).10.1063/1.118799Google Scholar
[7] Hirsch, M. T., Wolk, J. A., Walmukiewicz, W., and Hailer, E. E., Appl. Phys. Lett. 71, 1098 (1997).10.1063/1.119738Google Scholar
[8] Beadie, G., Rabinovich, W. S., Wickenden, A. E.. holeske, D. D., Binari, S. C., and Freitas, J. A. Jr., Appl. Phys. Lett. 71, 1092 (1997).Google Scholar
[9] Li, Z., Lin, J. Y., Jiang, H. X., Khan, M. A., and Chen, O.. Appl. Phys. Lett. 71, 1092 (1997).Google Scholar
[10] Huang, Z. C., Mott, D. B., Shu, P. K., Zhang, R..Chen, J. C., and Wickenden, D. K., J. Appl. Phys. 82, 2707- (1997).Google Scholar
[11] Shmagin, I. K.. Muth, J. F., Lee, J. H., Kolbas, R.. M. Balkas, C. M. Sitar, Z., and Davis, R. F.. Appl. Phys. Lett. 71. 455 (1997).10.1063/1.119577Google Scholar
[12] Joshkin, V. A.. Roberts, J C., McIntosh, F. G., Bedair, S.M., Pineer, E. L., and Belibehani, M. K., Appl. Phys. Lett. 71, 234. (1997).10.1063/1.120414Google Scholar