Skip to main content Accessibility help
×
Home

Photonic crystals: A platform for label-free and enhanced fluorescence biomolecular and cellular assays

  • Brian T. Cunningham (a1), Leo Chan (a1), Patrick C. Mathias (a2), Nikhil Ganesh (a3), Sherine George (a2), Erich Lidstone (a2), James Heeres (a4) and Paul J. Hergenrother (a4)...

Abstract

Photonic crystal surfaces represent a class of resonant optical structures that are capable of supporting high intensity electromagnetic standing waves with near-field and far-field properties that can be exploited for high sensitivity detection of biomolecules and cells. While modulation of the resonant wavelength of a photonic crystal by the dielectric permittivity of adsorbed biomaterials enables label-free detection, the resonance can also be tuned to coincide with the excitation wavelength of common fluorescent tags - including organic molecules and semiconductor quantum dots. Photonic crystals are also capable of efficiently channeling fluorescent emission into a preferred direction for enhanced extraction efficiency. Photonic crystals can be designed to support multiple resonant modes that can perform label free detection, enhanced fluorescence excitation, and enhanced fluorescence extraction simultaneously on the same device. Because photonic crystal surfaces may be inexpensively produced over large surface areas by nanoreplica molding processes, they can be incorporated into disposable labware for applications such as pharmaceutical high throughput screening. In this talk, the optical properties of surface photonic crystals will be reviewed and several applications will be described, including results from screening a 200,000-member chemical compound library for inhibitors of protein-DNA interactions, gene expression microarrays, and high sensitivity of protein biomarkers.

Copyright

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed