Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T02:29:14.462Z Has data issue: false hasContentIssue false

Photoluminescent Enhancement of Ruthenium Complex Monolayers by Surface Plasmon Resonance of Silver Nanoparticles

Published online by Cambridge University Press:  21 March 2011

Shanlin Pan
Affiliation:
Chemistry Department, University of Rochester, Rochester, NY 14627, U.S.A.
Zhenjia Wang
Affiliation:
Chemistry Department, University of Rochester, Rochester, NY 14627, U.S.A.
Lewis J. Rothberg*
Affiliation:
Chemistry Department, University of Rochester, Rochester, NY 14627, U.S.A.
*
Corresponding author, email: Rothberg@chem.rochester.edu
Get access

Abstract

The photoluminescence intensity from a bis (2,2'-bipyridine)-(5-isothiocyanato-phenanthroline) Ruthenium (RuBICP) monolayer covalently bound to a glass substrate is found to be enhanced up to 20 times when silver nanoparticles are deposited on top. The emission spectra are blue shifted by interactions with the silver nanoparticles. Field enhancement is found to be able to enhance the radiative decay rate by over three orders of magnitude but fewer than 2 % of the molecules in the sample experience this large enhancement. Increased absorption rates also increase the luminescence but to a much smaller degree.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kottmann, J.P., Martin, O.J.F., Smith, D.R. and Schultz, S., Optics Express 6(11), 213219 (2000).Google Scholar
2. Giese, B., McNaughton, D., Journal of Physical Chemistry B 106(1), 101112 (2002).Google Scholar
3. Das, P. and Metiu, H., Journal of Physical Chemistry 89, 46804687 (1985).Google Scholar
4. Wokaun, A., Molecular Physics 56(1) 133(1985).Google Scholar
5. Mihalcea, C., Buechel, D., Atoda, N. and Tominaga, J., Journal of the American Chemical Society 123(29), 71727173(2001).Google Scholar
6. Kümmerlen, J., Leitner, A., Brunner, H., Aussenegg, F. R., and Workaun, A., Molecular Physics 80(5), 10311046 (1993).Google Scholar
7. Lakowicz, J. R., Aanalytical Biochemistry 298, 124 (2001).Google Scholar
8. Lakowicz, J. R., Shen, B., Gryczynski, Z., D'Auria, S. and Gryczynski, I., Biochemical and Biophysical Research Communications 286, 875879 (2001).Google Scholar
9. Hayakawa, T., Selvan, S. T. and Nogami, M., Applied Physics Letters 74(11), 15131515 (1999).Google Scholar
10. Schalkhammer, T., Aussenegg, F. R., Leitner, A., Brunner, H., Hawa, G., Lobmaier, C. and Pittner, Fritz, SPIE 2976, 129136 (1997).Google Scholar
11. Mayer, C., Stich, N. and Schalkhammer, T., Advances In Fluorescence Sensing Technology, Proceeding of SPIE, 4252 (2001).Google Scholar
12. Sokolov, K., Chumanov, G. and Cotton, T. M. Analytical Chemistry 70(18), 38983905 (1998).Google Scholar
13. Kramer, A., Trabesinger, W., Hecht, B. and Wild, U. P., Applied Physics Letters 80(9), 16521654 (2002).Google Scholar
14. Antunes, P. A., Constantino, C. J. L., and Aroca, R. F., Duff, J., Langmiur 17, 29582964 (2001).Google Scholar
15. Kulakovich, O., Strekal, N., Yaroshevich, A., Maskevich, S., Gaponenko, S., Nabiev, I., Woggon, U. and Artemyev, M., Nano Letters 2(12), 14491452 (2002).Google Scholar
16. Szmacinski, H., Terpetschnig, E. and Lakowicz, J. R., Biophysical Chemistry 62 109120 (1996).Google Scholar
17. Wang, Z. J., Pan, S. L., Krauss, T. D., Du, H. and Rothberg, L. J., PNAS, 100 (15) 86388643 (2003)Google Scholar
18. Li, K., Stockman, M. I., and Bergman, D. J., Physical Review Letters 91, 227402.1227402.4 (2003)Google Scholar
19. Lakowicz, J. R, Shen, Y., Sabato, D., Joanna, M., Fang, J., Zygmunt, G. and Ignacy, G., Analytical Biochemistry, 301(2), 261–77(2002).Google Scholar
20. Li, L., Szmacinski, H. and Lakowicz, J. R., Biospectroscopy, 3(2), 155159 (1997).Google Scholar