Skip to main content Accessibility help

Photoluminescence Study of Energy Transfer Processes in Erbium Doped AlxGal−xAs Grown by MBE

  • Tong Zhang (a1), J. Sun (a2), N.V. Edwards (a2), D.E. Moxey (a2), R.M. Kolbas (a2) and P.J. Caldwell (a3)...


Sharp photoluminescence from the intra-4f shell of Er3+ is observed from erbium doped AlxGal-xAs (0 ≤x ≤ 1) grown by molecular beam epitaxy. The intensity of the luminescence from the erbium is strongly dependent on the aluminum composition with a maximum at x ≈ 0.6. We will present a model that explains the variation in intensity based on the energy transfer coupling efficiency between the host semiconductor and the optically active erbium ions. The coupling efficiency is dominated by the alignment or misalignment of the erbium energy levels with the energy bands of the host semiconductor and by the excess carrier lifetime in the host. The data and model, which are presented here for the first time, are consistent with our previous work on the effects of co-doping with Be or Si and with other workers' measurements of thermal quenching in rare earth doped semiconductors.



Hide All
1. Smith, R.S., Müller, H.D., Ennen, H., Wennekers, P. and Maier, M., Appl. Phys. Lett. 50, 49 (1987).
2. Galtier, P., Pocholle, J.P., Charasse, M.N., Cremoux, B. de and Hirtz, J.P., Appl. Phys. Lett. 55, 105 (1989).
3. Galtier, P., Charrasse, M.N., Chazelas, J., Huber, A.M., Grattepalin, C., Siejka, J. and Hirtz, J.P., Inst. Phys. Conf. Ser. No. 96: Chapt. 2, 61 (1989).
4. Galtier, P., Benyattou, T., Pocholle, J.P., Charasse, M.N., Guillot, G. and Hirtz, J.P., Inst. Phys. Conf. Ser. No. 106: Chapt. 5, 327 (1990).
5. Schmitt-Rink, S., Varma, C.M. and Levi, A.F.J., Phys. Rev. Lett. 66, 2782 (1991).
6. Benyattou, T., Seghier, D., Guillot, G., Moncorge, R., Galtier, P. and Charasse, M.N., Appl. Phys. Lett. 58, 2132 (1991).
7. Sanfaty, R., Cohen, A.R.E. and Logan, R.A., J. Appl. Phys. 59, 780 (1986).
8. Kalt, H., Smirl, A.L. and Boggess, R.F., J. Appl. Phys. 65, 294 (1989).
9. Bohnert, K., Kalt, H., Smirl, A.L., Norwood, D.P., Boggess, T.F. and D'Haenens, I.J., Phys. Rev. Lett. 60, 37 (1988).
10. Caldas, M.J., Fazzio, A. and Zunger, A., Appl. Phys. Lett. 45, 671 (1984).
11. Ledebo, L. and Ridley, B.K., J. Phys. C, 15, L961 (1982).
12. Neuhalfen, A.J. and Wessel, B.W., Appl. Phys. Lett. 60, 2657 (1992).
13. Casey, H.C. and Panish, M.B., Heterostructure Lasers, Part A, (Academic Press, CA, 1978), pp. 187194.
14. Wang, S., Fundamentals of Semiconductor Theory and Device Physics, (Prentice-Hall, NJ, 1989), pp. 522.
15. Kaminski, A.A., Laser Crystals, Springer Ser. in Optical Sci., Vol. 14, (Springer-Verlag, Berlin,1990), pp. 116318.
16. Mita, Y., Yoshida, T., Yagami, T. and Shionoga, S., J. Appl. Phys. 71, 938 (1992).
17. Mears, R.J. and Baker, S.R., Opt. and Quant. Elect. 24, 517 (1992).
18. Saito, R. and Kimura, T., Phys. Rev. B, 46, 1423 (1992).
19. Hemstreet, L.A., Mat. Sci. Forum, Vol. 10–12, 85 (1986).
20. Zhang, T., Hwang, Y., Sun, J., Edwards, N.V., Kolbas, R.M. and Caldwell, P.J., 1992 Elect. Mat. Conf. MIT, Cambridge, MA June 1992. Paper submitted to J. Elect. Mat.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed