Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T00:55:28.173Z Has data issue: false hasContentIssue false

Photoluminescence Studies of Annealed GaAs Films Grown on Si Substrates

Published online by Cambridge University Press:  28 February 2011

M. Bugajski
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
K. Nauka
Affiliation:
Hewlett-Packard, P.O.Box 10350, Palo Alto, CA 94304
S.J. Rosner
Affiliation:
Hewlett-Packard, P.O.Box 10350, Palo Alto, CA 94304
D. Mars
Affiliation:
Hewlett-Packard, P.O.Box 10350, Palo Alto, CA 94304
Get access

Abstract

Low temperature (T - 5K) photoluminescence (PL) has been measured on a variety of as-grown and annealed GaAs films grown on Si substrates by the MBE technique. The PL spectra of the annealed GaAs layers showed an apparent difference between the nomigally undoped samples with free carrier concentrations below 1015 cm−3 and the layers with dopant concentrations exceeding 1017 atoms cm−3 . The annealing caused an increase of both excitonic and defect related PL intensities in low doped samples. In heavily doped layers the annealing suppressed excitonic emission and strongly enhanced defect related luminescence bands. Observed post annealed infrared shifts of the PL peaks in the excitonic region are explained assuming a tetragonally distorted GaAs lattice under tensile stress, and an increase in stress after high temperature annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 see “Heteroepitaxy on Si”, ed. Fan, J.C.C., Poate, J.M., MRS Proc. Vol.67, Pittsburgh, PA 1986.Google Scholar
2 Lum, R.M., Klinger, J.K., Davison, B.A., Lemont, M.G., Appl.Phys.Lett. 51, 36 (1987).Google Scholar
3 Chand, N., People, R., Baiocchi, F.A., Wecht, K.W., Cho, A.Y., Appl.Phys.Lett. 49, 815 (1986).CrossRefGoogle Scholar
4 Lee, J.W., Shichijo, H., Tsai, H.L., Matyi, R.J., Appl.Phys.Lett. 50, 31 (1987).CrossRefGoogle Scholar
5 Rosner, S.J., Ph.D. Thesis, Stanford University 1987, unpublished.Google Scholar
6 Zemon, S., Shastry, S.K., Norris, P., Jagannath, C., Lambert, G., Sol.St.Comm. 58, 457 (1986).Google Scholar
7 Chiang, S.Y., Pearson, G.L., J.Luminesc. 10, 313 (1975).CrossRefGoogle Scholar
8 Batanin, V.V., Popova, G.V., Sov.Phys.Semicond. 7, 1194 (1974).Google Scholar
9 Wilson, B.A., Bonner, C.E., Harris, T.D., Lamont, M.G., Miller, R.C., Sputz, S.K., Vernon, S.M., Haven, V.E., Lum, R.M., Klinger, J.K., MRS Proc. Vol.91, Pittsburgh, PA 1987.Google Scholar
10 Katayama, M., Usami, A., Wada, T., Tokuda, Y., J.Appl.Phys. 62, 528 (1987).CrossRefGoogle Scholar
11 Pearah, P., Henderson, T., Klem, J., Morkoc, H., Nilson, B., Wu, O., Swanson, A.W., Chen, D.R., J.Appl.Phys. 56, 1851 (1984).Google Scholar
12 Bir, G.L., Pikus, G.E.Symmetry and Strain Induced Effects in Semiconductors”, Wiley, N.Y. 1974.Google Scholar
13 Asai, H., Oe, K., J.Appl.Phys. 54, 2052 (1983)CrossRefGoogle Scholar
14 , Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, ed.Madelung, O., Vol.17a, Springer, N.Y. 1982.Google Scholar
15 Ishida, K., Akiyama, M., Nishi, S., Jpn.J.Appl.Phys. 26, L530 (1987).CrossRefGoogle Scholar