Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-26T05:33:14.089Z Has data issue: false hasContentIssue false

Photoluminescence Spectroscopy and Rutherford Backscattering Channeling Evaluation of Various Capping Techniques for Rapid Thermal Annealing of Ion-Implanted ZnSe

Published online by Cambridge University Press:  22 February 2011

E.L. Allen
Affiliation:
San Jose State University, Department of Materials Engineering, San Jose, CA 95192
F.X. Zach
Affiliation:
Lawrence Berkeley Laboratory, Center for Advanced Materials, Materials Sciences Division, Berkeley, CA 94720
K.M. Yu
Affiliation:
Lawrence Berkeley Laboratory, Center for Advanced Materials, Materials Sciences Division, Berkeley, CA 94720
E.D. Bourret
Affiliation:
Lawrence Berkeley Laboratory, Center for Advanced Materials, Materials Sciences Division, Berkeley, CA 94720
Get access

Abstract

We report on the effectiveness of proximity caps and PECVD Si3N4 caps during annealing of implanted ZnSe films. OMVPE ZnSe films were grown using diisopropylselenide (DIPSe) and diethylzinc (DEZn) precursors, then ion-implanted with 1 × 1014 cm−2 N (33 keV) or Ne (45 keV) at room temperature and liquid nitrogen temperature, and rapid thermal annealed at temperatures between 200°C and 850°C. Rutherford backscattering spectrometry in the channeling orientation was used to investigate damage recovery, and photoluminescence spectroscopy was used to investigate crystal quality and the formation of point defects. Low temperature implants were found to have better luminescence properties than room temperature implants, and results show that annealing time and temperature may be more important than capping material in determining the optical properties. The effects of various caps, implant and annealing temperature are discussed in terms of their effect on the photoluminescence spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haase, M.A., Qiu, J., DePuydt, J.M. and Cheng, H., Appl. Phys. Lett. 59, 1272 (1991).Google Scholar
2. Park, R.M., Troffer, M. B., Rouleau, C.M., DePuydt, J. M. and Haase, M.A., Appl. Phys. Lett. 57, 2127 (1990).Google Scholar
3. Ohki, A., Shibata, N. and Zembutsu, S., Japn. J. Appl. Phys. 27, L909 (1988).Google Scholar
4. Taskar, N.R., Khan, B.A., Dorman, D.R. and Shahzad, K., Appl. Phys. Lett. 62, 270 (1993).Google Scholar
5. Wu, Z.L., Merz, J.L., Werkhove, C.J., Fitzpatrick, B.J. and Bhargava, R.N., Appl. Phys. Lett. 40, 345 (1982).Google Scholar
6. Akimoto, K., Miyajima, T. and Mori, Y., Japn. J. Appl. Phys. 28, L528 (1989).Google Scholar
7. Skromme, B.J., Stoffel, N.G., Gozdz, A.S., Tamargo, M.C. and Shibli, S.M., Mater. Res. Soc. Proc. 144, 391 (1989).Google Scholar
8. Bourret, E.D., Zach, F.X., Yu, K.M. and Walker, J. M., submitted to J. Crystal Growth.Google Scholar
9. Wesch, W., Nucl. Instrum. Meth. B68, 342 (1992).Google Scholar
10. Feldman, L.C., Mayer, J.W. and Picraux, S.T., Materials Analysis by Ion Channeling Academic Press, NY (1982), p. 125.Google Scholar
11 Merz, J.L., Nassau, K. and Shiever, J.W., Phys. Rev. B 8, 1444 (1973).Google Scholar
12. Huang, S.M., Nozue, Y. and Igaki, K., Japn. J. Appl. Phys. 22, L420 (1983).Google Scholar
13. Yang, Z., Bowers, K.A., Ren, J., Lansari, Y., Cook, J.W. Jr and Schetzina, J.F., Appl. Phys. Lett. 61, 2671 (1992).Google Scholar
14. Haukkson, I.S., Simpson, J., Wang, S.Y., Prior, K.A. and Cavenett, B.C., Appl. Phys. Lett. 61, 2208 (1992).Google Scholar
15. Chadi, D.J. and Troullier, N., Physica B 185, 128 (1993).Google Scholar