Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T05:13:37.776Z Has data issue: false hasContentIssue false

Photoluminescence of MBE and MOCVD ZnTe Films on GaAs

Published online by Cambridge University Press:  26 February 2011

B. A. Wilson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Carl E. Bonner
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. D. Feldman
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07330
R. F. Austin
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07330
D. W. Kisker
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07330
J. J. Krajewski
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07330
P. M. Bridenbaugh
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07330
Get access

Abstract

We present low-temperature photoluminescence (PL) spectra of MBE and MOCVD ZnTe layers deposited on (100) GaAs substrates under different growth conditions. Strong bands associated with Zn vacancies are observed in the MBE materials, while the MOCVD spectra are dominated by sharp impurity-related lines. Stress levels less than 0.1 kbar are determined for both the MBE and MOCVD layers. A study of the effects of the Zn:Te ratio in the MBE growth chamber reveals an optimal value of −2.2 for a growth temperature of 325°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Koboyashi, Masakazu, Mino, Naoki, Katagiri, Hironosi, Kimura, Ryuhei, Konagai, Makoto, and Takahashi, Kiyoshi, J. Appl. Phys. 60, 773 (1986).Google Scholar
2.Bonsett, T.C., Yamanishi, M., Gunshor, R.L., Datta, S., and Kolodziejski, L., Appl. Phys. Lett. 51, 17 (1987).Google Scholar
3.Chang, X.-C., Hefetz, Y., Chang, S.-K., Nakahara, J., Nurmikko, A.V., Kolodziejski, L.A., Gunshor, R.L., and Datta, S., Surf.Sci. 174, 292 (1986).Google Scholar
4.Kawakami, Yoichi, Taguchi, Tsunemasa, and Hiraki, Akio, to be published in J. Cryst. Growth, Proc. of Seventh American Conf. on Crystal Growth, Monterey, CA, July 12–17, 1987.Google Scholar
5.Yao, T., Makita, Y., and Maekawa, S., Jpn. J. Appl. Phys. 15, 1001 (1976).Google Scholar
6.Wagner, B.K., Oakes, J.D., and Summers, C.J., to be published in J. Cryst. Growth, Proc. of Seventh American Conf. on Crystal Growth, July 1987.Google Scholar
7.Goldfinger, P. and Jeunehomme, M., Trans. Faraday Soc. 59, 2851 (1963).Google Scholar
8.Feldman, R.D., Austin, R.F., Bridenbaugh, P.M., Johnson, A.M., Simpson, W.M., Wilson, B.A.. and Bonner, C.E., unpublished.Google Scholar
9.Kisker, D.W., Krajewski, J.J., Wilson, B.A., Bonner, Carl E., and Bridenbaugh, P.M., unpublished.Google Scholar
10.Meese, J.M. and Park, Y.S., in Radiation Damage and Defects in Semiconductors (Inst. Phys.Conf. Ser. 16, 973) page 51.Google Scholar
11.Bitterbiere, J. and Cox, R.T., Phys.Rev. B 34, 2360 (1986)Google Scholar
12.Dessus, J.L., Dang, Le Si, Nahmani, A. and Romestain, R., Solid State Commun. 17, 689 (1981).Google Scholar
13.Dean, P.J., Venghaus, H., Pfister, J.C., Schaub, D. and Marine, J., J. Lumin. 16, 363 (1978).Google Scholar
14.Pautrat, J.L., Francou, J.M., Magnea, N., Molva, E. and Saminadayar, K., J. of Cryst. Growth 72, 194 (1985).Google Scholar
15.Thermophysical Properties of Matter, Series Ed. Touloukian, Y.S., Vols.12&13. (Plenum Press, New York, 1975).Google Scholar
16.Wardzynski, W., Giriat, W., Szymczak, H. and Kowalczyk, R., Phys. Stat. Sol. B49, 71 (1972).Google Scholar
17.Nahory, R.E. and Fan, H.Y., Phys. Rev. 156, 3 (1967).Google Scholar
18.Nakashima, S., Hattori, T. and Yamaguchi, Y., Solid State Commun. 25, 137 (1978).Google Scholar
19.Jones, E.D., Hjalmerson, Harold P. and Norris, C.B., J. of Lumin., 31&32, 436 (1984).Google Scholar