Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-24T18:29:40.076Z Has data issue: false hasContentIssue false

Photoluminescence from Si/Ge Superlattices

Published online by Cambridge University Press:  28 February 2011

G.F.A. van de Walle
Affiliation:
Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands
E.A. Montie
Affiliation:
Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands
D.J. Gravesteijn
Affiliation:
Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands
C.W. Fredriksz
Affiliation:
Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands
Get access

Abstract

The luminescence of short period Si/Ge superlattices was systematically studied as a function of composition, strain and superlattice period. With Rutherford backscattering spectrometry the composition was determined, while X-ray diffraction was used to determine the strain and superlattice period. Two luminescence bands around 1,6 µm were observed. Etching experiments showed that the signal originated from the superlattice. Changes in wavelength and intensity were found to be related to the composition and the strain, while no clear influence of the superlattice period was observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Lang, D.V., People, R., Bean, J.C. and Serpent, M.A., Appl.Phys.Lett. 47, 1333 (1985).Google Scholar
2Van de Walle, C.G. and Martin, R.M., Phys.Rev. B34, 5621 (1986).Google Scholar
3Hybertsen, M.S. and Schlüter, M., Phys.Rev. B36, 9683 (1987).Google Scholar
4Froyen, S., Wood, D.M. and Zunger, A., Phys.Rev. B37, 6893 (1988).Google Scholar
5Satpathy, S., Martin, R.M. and Van de Walle, C.G., Phys.Rev. B38, 13237 (1988).Google Scholar
6Pearsell, T.P., Bevk, J., Feldman, L.C., Bonar, J.M., Mannaerts, J.P. and Ourmazd, A., Phys.Rev.Lett. 58, 729 (1987).Google Scholar
7Zachai, R., Friess, E., Abstreiter, G., Kasper, E. and Kibbel, M., Proc. 19th Int. Conf. Phys. Semicond., ed. Zawadski, W. (Polish Academy of Sciences, Warsaw 1988) p.487.Google Scholar
8Montie, E.A., van de Walle, G.F.A., Gravesteijn, D.J., van Gorkum, A.A., Cosman, E.C., Fredriksz, C.W., Bulle-Lieuwma, C.W.T., Thin Sol. Films, in press.Google Scholar
9van Gorkum, A.A., van de Walle, G.F.A., van den Heuvel, R.A., Gravesteijn, D.J. and Fredriksz, C.W., Thin Sol. Films, in press.Google Scholar
10van de Walle, G.F.A., Fredriksz, C.W., van Gorkum, A.A., van den Heuvel, R.A., Bulle-Lieuwma, C.W.T. and van Uzendoorn, L.J., Philips J.Res. 44, 141 (1989).Google Scholar
11Humlicek, J., Carriga, M., Alonso, M.I. and Cardona, M., J.Appl.Phys. C65, 2827 (1989).Google Scholar