Hostname: page-component-788cddb947-kc5xb Total loading time: 0 Render date: 2024-10-13T22:07:00.314Z Has data issue: false hasContentIssue false

Photoluminescence from Ge/Si Nanocrystals Embedded in Silicon Oxide Matrix Annealed in Hydrogen Gas

Published online by Cambridge University Press:  01 February 2011

Shin-ichiro Uekusa
Affiliation:
uekusa@isc.meiji.ac.jp, Meiji University, Electronics and Bioinformatics, Kawasaki, Kanagawa, Japan
Naoki Kosaka
Affiliation:
ce77034@isc.meiji.ac.jp, Meiji University, Electronics and Bioinformatics, Kawasaki, Japan
Get access

Abstract

Photoluminescence (PL) spectra from Si nanocrystals embedded in silicon oxide matrix (Si-SiO2) thin films, Ge embedded in silicon oxide matrix (Ge-SiO2) thin films and both Ge and Si embedded in silicon oxide matrix (Ge/Si-SiO2) thin films prepared by RF magnetron sputtering were investigated. All as-deposited thin films were annealed for 1h in the temperature range from 500°C to 1100°C in Ar or H2 atmosphere. The PL spectra of Si-SiO2 thin films exhibited red luminescence at an annealing temperature of 1100°C and the PL intensity of the sample annealed in H2 gas increased by a factor of approximately 6.3 in comparison with sample annealed in Ar gas. Subsequently, The PL intensity of main peak centered at about 400 nm (V-band) of Ge-SiO2 thin films annealed in H2 gas exhibited strong comparison with the sample annealed in Ar gas. Finally, the PL spectra of Ge/Si-SiO2 thin films exhibited strong peak centered at approximately 500-530 nm (G-band) besides V-band and others in the temperature range from 700°C to 1000°C. The PL intensity of G-band of the samples annealed in H2 gas exhibited weak comparison with Ar gas.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chanham, L. E., Appl. Phys. Lett. 57 1046 (1990).Google Scholar
2. Wellner, A. and Paillard, V., J. Appl. Phys. 96 24032405 (2004).Google Scholar
3. Mazen, F., Baron, T., Paron, A. M., Truche, R. and Hartmann, J. M., Appl. Surf. Sci. 214 359363 (2003).Google Scholar
4. Seo, J. M., Jeong, M. C. and Myoung, J. M., J. Cryst. Growth 295 119123 (2006).Google Scholar
5. Ray, S. K. and Das, K., Opt. Mater. 27 948952 (2005).Google Scholar
6. Jensen, J. S., Pedersen, T. P. L., Pereira, R., Checallier, J., Hansen, J. L., Nielsen, B. B. and Larsen, A. N., Appl. Phys. A83 4148 (2006).Google Scholar
7. Bi, L., He, Y. and Feng, J. Y., Cryst, J. . Growth 289 564567 (2006).Google Scholar
8. Jie, Y. X., Wee, A. T. S., Huan, C. H. A., Sun, W. X., Shen, Z. X. and Chua, S. J., Mater. Sci. Eng B107 813 (2004).Google Scholar
9. Ledoux, G., Guillois, O., Porterat, D., Reynaud, C., Huisken, F., Kohn, B. and Paillard, V., Phys. Rev. B62 1594215951 (2000).Google Scholar
10. Khomenkova, L., Krsunska, N., Torchynska, T., Yukhimchuk, V., Jumayev, B., Jumayec, B., Many, A., Goldstein, Y., Savir, E. and Jedrejewski, J., J. Phys. Condens. Mater. 14 13217 (2002).Google Scholar
11. Korsunska, N., Baron, M., Khomenkoca, L., Yukhymchuk, V., Goldstein, Y., Savir, E. and Jedrejewski, J., Mater. Sci. Eng. C23 691 (2003).Google Scholar
12. Wilkinson, A. R. and Elliman, R. G., Phys. Rev. B 68 155302 (2003).Google Scholar
13. Leto, A., Munisso, M. C., Porporati, A. A., Zhu, W. and Pezzotti, G., J. Phys. Chem. A 112 39273934 (2008).Google Scholar
14. Prokes, S. M. and Carlos, W. E., J. Appl. Phys. 78 26712674 (1995).Google Scholar
15. Wu, X. M., Lu, M. J., Yao, W. G., Surf. Coat. Technol. 161 92 (2002).Google Scholar
16. Avella, M., prieto, A. C., Jimenez, J., Rodriguez, A., Sangrador, J., Rodriguez, T., Solid State Communications 136 224227 (2005).Google Scholar
17. Uekusa, S., Kushida, A., Mater. Res. Soc. Symp. Proc. 958 99104 (2007).Google Scholar