Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T17:27:06.545Z Has data issue: false hasContentIssue false

Photoluminescence And The Optimum Growth Conditions Of High Quality ZnS Epitaxial Layers

Published online by Cambridge University Press:  10 February 2011

Sungun Nam
Affiliation:
Department of Physics, Chungnam National University, Taejon, Korea
Jongkwang Rhee
Affiliation:
Department of Physics, Chungnam National University, Taejon, Korea
Young-Moon Yu
Affiliation:
Department of Physics, Chungnam National University, Taejon, Korea
Byungsung O
Affiliation:
Department of Physics, Chungnam National University, Taejon, Korea
Ki-Seon Lee
Affiliation:
Department of Physics, Chungnam National University, Taejon, Korea
Y. D. Choi
Affiliation:
Department of Physics, Mokwon University, Taejon, Korea, ydchoi@mwus.mokwon.ac.Kr
H. J. Yun
Affiliation:
Department of Physics, Mokwon University, Taejon, Korea, ydchoi@mwus.mokwon.ac.Kr
Chang Soo Kim
Affiliation:
Korea Research Institute of Standards and Science, Yusong Taejon, Korea
Yang-June Jung
Affiliation:
Department of Physics, Mokpo National University, Muan, Korea
Get access

Abstract

High quality ZnS epilayers were grown on GaAs and GaP substrates by hot wall epitaxy. The optimum temperature conditions for high quality ZnS epilayer were found. The photoluminescence(PL) spectrum of high quality ZnS epilayers showed sharp and narrow exciton peaks and no self-activated peaks. The room temperature energy gap of ZnS/GaAs was found to be 3.729 eV from the experimentally observed free exciton PL peaks. The temperature dependence of the PL intensity showed a two step quenching process and the temperature dependence of the PL linewidth broadening was tried to analyze in terms of exciton scattering process. From the splitting of the heavy hole and the light hole exciton peaks, the strain was identified.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Summers, C.J., Tong, W., Tran, T.K., Ogle, W., Park, W. and Wagner, B.K., J. Cryst. Growth 159, p. 64(1996).Google Scholar
2. Nakamura, S., Sakashita, T., Yoshimura, K. and Yamada, Y., Jpn. J. Appl. Phys. 36, p. L491 (1997).Google Scholar
3. Liu, C. H., Yokoyama, M. and Su, Y. K., Jpn. J. Appl. Phys. 35(10), p. 5416(1996).Google Scholar
4. Heuken, M., Sollner, J., Guimaraes, F. E. G., Marquardt, K. and Heime, K., J. Cryst. Growth 117, p. 336(1992).Google Scholar
5. BenzIIA, R. G., Huang, P. C., Stock, S. R. and Summers, C. J., J. Cryst. Growth 86, p. 303 (1988)Google Scholar
6. Yodo, T., Uedo, K., Morio, K., Yamashita, K. and Tanaka, S., J. Appl. Phys. 68, p. 5674(1990)Google Scholar
7. Kanehisa, O., Shiiki, M., Migita, M. and Yamamoto, H., J. Cryst. Growth 86, p. 367(1988).Google Scholar
8. Abounadi, A., Blasio, M. Di, Bouchara, D., Calas, J., Averous, M., Brot, O., Briot, N., Cloitre, T., Aulombard, R. L. and Gil, B., Phys. Rev. B 50, p. 11677(1994).Google Scholar
9. Tran, T. K., Park, W., Tong, W., Kyi, M. M., Wagner, B. K. and Summers, C., J. Appl. Phys. 81, p. 2803(1997).Google Scholar
10. Taguchi, T., Yokogawa, T. and Yamashita, H., Solid State Commun. 49, p. 551 (1984).Google Scholar
11. Fernandez, M., Prete, P., Lovergine, N., Mancini, A. M., Cingolani, R., Vasanelli, L. and Perrone, M. R., Phys. Rev. B 55, p. 7660(1997).Google Scholar
12. Kawakami, Y., Taguchi, T. and Hiraki, A., J. Cryst. Growth 89, p. 331 (1988).Google Scholar
13. Heuken, M., Sollner, J., Guimaraes, F. E. G., Marquardt, K. and Heime, K., J. Cryst. Growth 117, p. 336(1992).Google Scholar
14. O'Donell, K. P. and Chen, X., Appl. Phys. Lett. 58, p. 2924(1991).Google Scholar
15. Giles, N. C., Lee, J., Rajavel, D. and Summers, C. J., J. Appl. Phys. 73, p. 4541 (1993).Google Scholar