Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T08:41:55.812Z Has data issue: false hasContentIssue false

Photoluminescence and EPR of Phosphorus Vacancies in ZnGep2

Published online by Cambridge University Press:  10 February 2011

M. Moldovan
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506
K. T. Stevens
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506
L. E. Halliburton
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506
P. G. Schunemann
Affiliation:
Sanders-a Lockheed Martin Co., Nashua, NH 03061
T. M. Pollak
Affiliation:
Sanders-a Lockheed Martin Co., Nashua, NH 03061
S. D. Setzler
Affiliation:
Sanders-a Lockheed Martin Co., Nashua, NH 03061
N. C. Giles
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506
Get access

Abstract

Zinc germanium diphosphide (ZnGeP2) is a nonlinear optical material used in mid-infrared optical parametric oscillators. The near-infrared photoluminescence (PL) from single crystals of bulk ZnGeP2 has been studied as a function of excitation power, wavelength, temperature, and polarization. At 5 K, a broad PL band extending from 0.7 µm to beyond 1 µm is typically observed. Two distinct emissions with different polarization, power, and temperature behaviors have been resolved. These bands have peaks in intensity near 1.6 eV and 1.4 eV. The relative intensities of these two bands were found to correlate with the presence of phosphorus vacancies, as determined by electron paramagnetic resonance (EPR). A resonance in the intensity of the 1.6-eV band occurs when pumping into a level ∼90 meV below the minimum conduction band. This level is tentatively assigned to the shallow state.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Petrov, V., Rotermund, F., Noack, F., and Schunemann, P., Optics Letters 24, 414 (1999).Google Scholar
2. Schunemann, P. G., Schepler, K. L., and Budni, P. A., MRS Bulletin 23, 45 (1998):Google Scholar
3. Halliburton, L. E., Edwards, G. J., Scripsick, M. P., Rakowsky, M. H., Schunemann, P. G., and Pollak, T. M., Appl. Phys. Lett. 66, 2670 (1995).Google Scholar
4. Stevens, K. T., Setzler, S. D., Halliburton, L. E., Femelius, N. C., Schunemann, P. G., and Pollak, T. M., Mater. Res. Soc. Symp. Proc. 484, 549 (1998).Google Scholar
5. Setzler, S. D., Schunemann, P. G., Pollak, T. M., Ohmer, M. C., Goldstein, J. T., Hopkins, F. K., Stevens, K. T., Halliburton, L. E., and Giles, N. C., J. Appl. Phys. 86 (Dec. 15, 1999).Google Scholar
6. Giles, N. C., Halliburton, L. E., Schunemann, P. G., and Pollak, T. M., Appl. Phys. Lett. 66, 1758 (1995).Google Scholar
7. Setzler, S. D., Giles, N. C., Halliburton, L. E., Schunemann, P. G., and Pollak, T. M., Appl. Phys. Lett. 74, 1218 (1999).Google Scholar
8. Petcu, M. C., Giles, N. C., Schunemann, P. G., and Pollak, T. M., Phys. Stat. Sol. (b), 198, 881 (1996).Google Scholar
9. Limpijumnong, S., Lambrecht, W. R. L., and Segall, B., Phys. Rev. B 60, 8087 (1999).Google Scholar
10. Shileika, A., Surface Sci. 37, 730 (1973).Google Scholar
11. Gorban', I. S., Gorynya, V. A., Lugovskii, V. V., and Tychina, I. I., Sov. Phys. Sol. State 16, 1029 (1974).Google Scholar
12. Rud, Yurri V., Yu, Vasilii, Ohmer, M. C., and Schunemann, P. G., Mat. Res. Soc. Symp. Proc. 450, 339 (1997).Google Scholar
13. Hobgood, H. M., Henningsen, T., Thomas, R. N., Hopkins, R. H., Ohmer, M. C., Mitchel, W. C., Fischer, D. W., Hegde, S. M., and Hopkins, F. K., J. Appl. Phys. 73, 4030 (1993).Google Scholar
14. McCrae, J. E. Jr., Gregg, M. R., Hengehold, R. L., Yeo, Y. K., Ostdiek, P. H., Ohmer, M. C., Schunemann, P. G., and Pollak, T. M., Appl. Phys. Lett. 64, 3142 (1994).Google Scholar
15. Setzler, S. D., Halliburton, L. E., Giles, N. C., Schunemann, P. G., and Pollak, T. M., Mat. Res. Soc. 450, 327 (1997).Google Scholar
16. Dietz, N., Busse, W., Gumlich, H. E., Ruderman, W., Tsveybak, I., Wood, G., and Bach-mann, K. J., Mat. Res. Soc. Symp. Proc. 450, 333 (1997).Google Scholar
17. Krause-Rehberg, R., Polity, A., Siegel, W., and Kühnel, G., Semicond. Sci. Technol. 8, 290 (1993).Google Scholar
18. Stevens, K. T., Setzler, S. D., Schunemann, P. G., Pollak, T. M., Giles, N. C., and Halliburton, L. E. (paper appearing in this MRS Proceedings volume).Google Scholar