Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T02:22:58.388Z Has data issue: false hasContentIssue false

Photoemission Study of Single Crystal C60

Published online by Cambridge University Press:  25 February 2011

J. Wu
Affiliation:
Stanford Synchrotron Radiation Laboratory and Stanford Electronics Laboratories, Stanford, CA 94309
Z.-X. Shen
Affiliation:
Stanford Synchrotron Radiation Laboratory and Stanford Electronics Laboratories, Stanford, CA 94309
D. S. Dessau
Affiliation:
Stanford Synchrotron Radiation Laboratory and Stanford Electronics Laboratories, Stanford, CA 94309
R. Cao
Affiliation:
Stanford Synchrotron Radiation Laboratory and Stanford Electronics Laboratories, Stanford, CA 94309
D. S. Marshall
Affiliation:
Stanford Synchrotron Radiation Laboratory and Stanford Electronics Laboratories, Stanford, CA 94309
P. Pianetfa
Affiliation:
Stanford Synchrotron Radiation Laboratory and Stanford Electronics Laboratories, Stanford, CA 94309
I. Lindau
Affiliation:
Stanford Synchrotron Radiation Laboratory and Stanford Electronics Laboratories, Stanford, CA 94309
X. Yang
Affiliation:
Stanford Synchrotron Radiation Laboratory and Stanford Electronics Laboratories, Stanford, CA 94309
J. Terry
Affiliation:
Stanford Synchrotron Radiation Laboratory and Stanford Electronics Laboratories, Stanford, CA 94309
D. M. King
Affiliation:
Stanford Synchrotron Radiation Laboratory and Stanford Electronics Laboratories, Stanford, CA 94309
B. O. Wells
Affiliation:
Stanford Synchrotron Radiation Laboratory and Stanford Electronics Laboratories, Stanford, CA 94309
Get access

Abstract

We report angle-resolved photoemission data from single crystals of C60 cleaved in UHV. Unlike the other forms of pure carbon, the valence band spectrum of C60 consists of many sharp features that can be essentially accounted for by the quantum chemical calculations describing individual molecules. This suggests that the electronic structure of solid C60 is mainly determined by the bonding interactions within the individual molecules. We also observe remarkable intensity modulations of the photoemission features as a function of photon energy, suggesting strong final state effects. Finally, we address the issue of the band width of the HOMO state of C60. We assert that the width of the photoemission peak of C60 does not reflectthe intrinsic band width.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yannoni, C. S., Yannoni, C. S., Johnson, R. D., Meijer, G., Bethune, D. S., and Salem, J. R., J. Phys. Chem. 25, 9 (1991).CrossRefGoogle Scholar
2. Rotter, L. D. et al. , preprint.Google Scholar
3. Tycko, R., Tycko, R., Dabbagh, G., Rosseinsky, M. J., Murphy, D. W., Fleming, R. M., Ramirez, A. P., Tully, J. C., Science 253, 884.(1991).CrossRefGoogle Scholar
4. Ramirez, A. P., Susceptibility and critical field measurements also yield a narrow band width (about 7 or 8 times narrower than the photoemission data). (private communication).Google Scholar
5. Bethune, D. S., Bethune, D. S., Meijer, G., Tang, W. C., Rosen, H. J., Golden, W. G., Seki, H., Brown, C. A., and Vries, M. S. de, Chem. Phys. Lett. 179. 181 (1991).CrossRefGoogle Scholar
6. Lichtenberger, D. L., Nebesny, K.W., Ray, C. D., Huffman, D. R. and Lamb, L. D., Chem. Phys. Lett. 176, 203 (1991).CrossRefGoogle Scholar
7. Weaver, J. H., Martins, J. L., Komeda, T., Chen, Y., Ohno, T. R., Kroll, G.H., Troullier, N., Haufler, R. E., and Smalley, R. E., Phys. Rev. Lett. 66, 1741 (1991).CrossRefGoogle Scholar
8. Chen, C. T., Tijeng, L. H., Rudolf, P., Meigs, G., Rowe, J. R., Chen, J., McCauley, T. P. Jr, Smith, A. B. III, McGhie, A. R., Romanow, W. J., and Plummer, E. W., Nature 352, 603 (1991).CrossRefGoogle Scholar
9. Wertheim, G. K., Rowe, J. E., Buchanan, D. N. E., Chaban, E. E., Hebard, A. F., Kortan, A. R., Makhija, A. V., Haddon, R. C., Science 252, 1420 (1991).CrossRefGoogle Scholar
10. Takahashi, T., Morikawa, T., Sato, S., Yoshida, H. K., Yuyama, A., Seki, K., Fujimoto, H., Hino, S., Hasegawa, S., Kamiya, K., Inokuchi, H., Kikuchi, K., Physica C., 185, 417 (1991).CrossRefGoogle Scholar
11. Kratschmer, W., Lamb, L. D., Fostiropoulos, K., Huffman, D. R., Nature, 347. 354 (1990).CrossRefGoogle Scholar
12. Hgeiss, R., Brown, C. H., Chapa-perez, O., Savoy, R. J., Wendt, H. R., Elloway, D., and Vries, M. S. de, to be published.Google Scholar
13. Wu, J., Shen, Z.-X., Dessau, D. S., Cao, R., Marshall, D. S., Pianetta, P., Lindau, I., and Yang, X., Terry, J., King, D. M., Wells, B. O., submitted to Physica C.Google Scholar
14. Saito, Susumu, and Oshiyama, Atsushi, Phys. Rev. Lett. 66, 2637 (1991).CrossRefGoogle Scholar
15. Benning, P.J., Poirier, D. M., Troullier, N., Martins, J. L., Weaver, J. H., Haufler, R. E., Chibante, L. P. F., and Smalley, R. E., Phys. Rev. B 44, 1962 (1991).CrossRefGoogle Scholar
16. Martins, J. L., Troullier, N. and Weaver, J. H., Chem. Phys. Lett. 180, 457 (1991).CrossRefGoogle Scholar
17. Baltzer, P., Griffiths, W. J., Maxwell, A. J., Bruthwiler, P. A., Karlsson, L. and Martensson, N., to be published.Google Scholar