Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-25T18:09:16.188Z Has data issue: false hasContentIssue false

Photoelectron Spectra of C60H36 and C60H60

Published online by Cambridge University Press:  25 February 2011

B. I. Dunlap
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375–5000.
J. W. Mintmire
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375–5000.
D. H. Robertson
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375–5000.
D. W. Brenner
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375–5000.
R. C. Mowrey
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375–5000.
C. T. White
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375–5000.
Get access

Abstract

We have calculated the electronic structure of icosahedrai C60H60 and tetrahedral C60H60 via an all-electron Gaussian-orbital based local-density functional approach. The one-electron wavefunctions and eigenvalues have been used in a first-order time-dependent perturbation theoretic calculation of the spherically averaged X-ray and ultraviolet pho-toemission cross-sections for these molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krätschmer, W., Lamb, L.D., Fostiropolous, K., and Huffman, D.R., Nature 347, 354 (1990).Google Scholar
2. Haufler, R.E., Conceicao, J., Chibente, L.P.F, Chai, Y., Byrne, N.E., Flanagan, S., Haley, M.M., O'Brien, S.C., Pan, C., Xiao, Z., Billups, W.E., Ciufolini, M.A., Hauge, R.H., Margrave, J.L., Wilson, L.J., Curl, R.F., and Smalley, R.E., J. Phys. Che. 94, 8634 (1990).Google Scholar
3. Kroto, H.W., Allai, A.W., and Balm, S.R, Chem. Rev. 91, 1213 (1991).Google Scholar
4. Dunlap, B.I., Brenner, D.W., Mowrey, R.C., Mintmire, J.W., Robertson, D.H., and White, C.T., Mat. Res. Soc. Symp. Proc. 206, 687 (1991).Google Scholar
5. Dunlap, B.I., Brenner, D.W., Mintmire, J.W., Mowrey, R.C., and White, C.T., J. Phys. Chem. 95, 5763 (1991).Google Scholar
6. Brenner, D.W., Phys. Rev. B 42, 9458 (1990).Google Scholar
7. Scuseria, B.E., Chem. Phys. Lett 176, 423 (1991).Google Scholar
8. Cioslowski, J., Chem. Phys. Lett 181, 68 (1991).Google Scholar
9. Saunders, M., Science 253, 330 (1991).Google Scholar
10. McElvany, S.W. and Callahan, J.H., J. Phys. Chem. 95 6187 (1991).Google Scholar
11. Chase, S.J., Yu, R.Q., Mitch, M.G., and Lannin, J.S., preprint.Google Scholar
12. Meilunas, R., Chang, R.P.H., Lin, S., and Kappes, M.M., unpublished.Google Scholar
13. Perdew, J.P. and Zunger, A., Phys. Rev. B 23, 5948 (1981).Google Scholar
14. Dunlap, B.I. and Rösch, N., Advances in Quantum Chemistry, ed. Trickey, S.B. (Academic Press, New York, 1990) p. 317.Google Scholar
15. Dunlap, B.I., Adv. Chem. Phys. 69, 287 (1987).Google Scholar
16. Dunlap, B.I., Andzelm, J., and Mintmire, J.W., Phys. Rev. A 42, 63546359 (1990).Google Scholar
17. Mintmire, J.W., Dunlap, B.I., Brenner, D.W., Mowrey, R.C., and White, C.T. Phys. Rev. B 43, 14281 (1991).Google Scholar
18. Mintmire, J.W., Kutzler, F.W., and White, C.T., Phys Rev. B 36, 3312 (1987).Google Scholar
19. Mintmire, J.W. and White, C.T., Int. J. Quantum Chem. Symp. 17, 609 (1983).Google Scholar
20. Dunlap, B.I., Brenner, D.W., Mintmire, J.W., Mowrey, R.C., and White, C.T. J. Phys. Chem. 95, 8737 (1991).Google Scholar