Skip to main content Accessibility help
×
Home

Photoelectrochemical Properties of Highly-ordered Titania Nanotube-arrays

  • Maggie Paulose (a1), Oomman K. Varghese (a1), Karthik Shankar (a1), Gopal K. Mor (a1) and Craig A. Grimes (a1)...

Abstract

We report on non-particulate titania photoelectrodes with a unique highly-ordered nanotube-array architecture prepared by an anodization process that enables precise control over array dimensions. Under 320–400 nm illumination titania nanotube-array photoanodes, pore size 110 nm, wall thickness 20 nm, and 6 μm length, generate hydrogen by water photoelectrolysis at a normalized rate of 80 mL/W•hr, to date the most efficient titania-based photoelectrochemical device, with a conversion efficiency of 12.25%. The highly-ordered nanotubular architecture allows for superior charge separation and charge transport, with a calculated quantum efficiency of nearly 100% for incident photons with energies larger than the titania bandgap.

Copyright

References

Hide All
1. Aroutiounian, V. M., Arakelyan, V. M., Shahnazaryan, G. E., Solar Energy, and References therein, in press (2004)
2. Gratzel, M., Journal of Photochemistry and Photobiology C-Photochemistry Reviews 4, 145153 (2003).
3. Gratzel, M., Nature 414, 338344 (2001).
4. Gratzel, M., Journal of Photochemistry and Photobiology a-Chemistry 164, 314 (2004).
5. Nazeeruddin, M. K. et al., Journal of the American Chemical Society 123, 16131624 (2001).
6. Cao, F., Oskam, G., Meyer, G. J., Searson, P. C., Journal of Physical Chemistry 100, 1702117027 (1996).
7. deJongh, P. E., Vanmaekelbergh, D., Physical Review Letters 77, 34273430 (1996).
8. Zhang, X. et al., Journal of the Electrochemical Society 148, G398–G400 (2001).
9. Limmer, S. J., Chou, T. P., Cao, G. Z., Journal of Materials Science 39, 895901 (2004).
10. Yoo, S., Akbar, S. A., Sandhage, K. H., Adv. Mater. 16, 260 (2004).
11. Adachi, M., Murata, Y., Okada, I., Yoshikawa, S., Journal of the Electrochemical Society, 150, G488–G493 (2000).
12. Zhu, Y. C., Li, H. L., Koltypin, Y., Hacohen, Y. R., Gedanken, A., Chemical Communications, 24, 26162617 (2001).
13. Peng, T. Y., Hasegawa, A., Qiu, J. R., Hirao, K., Chemistry of Materials 15, 20112016 (2003).
14. Butterfield, I. M. et al., Journal of Applied Electrochemistry 27, 385395 (1997).
15. Varghese, O. K., Gong, D. W., Paulose, M., Grimes, C. A., Dickey, E. C., Journal of Materials Research 18, 156165 (2003).
16. Mor, G. K., Varghese, O. K., Paulose, M., Mukherjee, N., Grimes, C. A., Journal of Materials Research 18, 25882593 (2003).
17. Varghese, O.K., Mor, G. K., Grimes, C. A., Paulose, M., Mukherjee, N., J. Nanoscience Nanotechnology 4, 733 (2004)
18. We note the hydrogen sensitivity of the material is the largest known sensitivity of any material, to any gas, at any temperature; at 23°C in response to 1000 ppm hydrogen the nanotubes demonstrate a 1, 000, 000, 000% change in electrical resistivity.
19. Mor, G. K., Carvalho, M. A., Varghese, O. K., Pishko, M. V., Grimes, C. A., Journal of Materials Research 19, 628634 (2004).
20. Vanmaekelbergh, D., de Jongh, P. E., Journal of Physical Chemistry B 103, 747750 (1999).
21. Hamnett, A., Faraday Discussions of the Chemical Society 70, 127 (1980).
22. Kumar, K.–N. P., Keizer, K., Burggraaf, A. J., Okubo, T. and Nagamoto, H., J. Mater. Chem. 3, 1151 (1993).
23. Gouma, P.I. and Mills, M.J., J. Am. Ceram. Soc. 84, 619 (2001).
24. Hagfeldt, A. and Gratzel, M., Chemical Reviews 95, 49 (1995).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed